
Supplementary informations for: Inferring biophysical properties of membrane during
endocytosis using machine learning

I. BOUNDARY CONDITIONS AND
COORDINATES CONSTRAINT

The two variational equations eqr and eqz are fourth-
order ordinary differential equations. The solutions to
these two equations are not unique because there is a
freedom to choose the scaled factor. To see this, note that
[r(u), z(u)] and [r(u2), z(u2)] give the same membrane
shape when u is varied from 0 to 1. In fact, u2 in the
bracket can be replaced with any monotonous function
g(u) that maps the interval [0, 1] to itself. To avoid the
non-uniqueness problem, we add a coordinates constraint

a′ = 0 for u ∈ [0, 1]. (1)

With this constraint, the parameter u is essentially the
rescaled arclength and the value of a is the total arclength
of the membrane profile.

As for the boundary conditions, we have a total of 8
equations:



r(0) = 0
r(1) = Rb

r′′(0) = 0
r′′(1) = 0
z(0) = z0
z(1) = 0
z′(0) = 0
z′(1) = 0

. (2)

The first line is due to axisymmetry of the membrane
shape. Note that for the purpose of computation in a
computer, r(0) = 0 introduces a numerical singularity as
it appears in the denominator of the curvature expression

H of 2H = − 1
a

(
b
a2 + z′

r

)
,. In practice, we choose r(0) =

0.001, which is a very small number such that it would
not influence the accuracy of the solution at the rest of
the points. The second line sets the base radiusRb, which
would be learned by the neuron network in the inverse
problem. The third line is also due to axisymmetry of
the membrane shape. The fifth and the sixth lines set
the membrane heights. In the inverse problem, we set z0
to be the same as the experimental profile. The seventh
and eighth lines set the angle at the tip and at the base
to be zero. As for the fourth line, it arises from the
coordinate constraint (1) expressed at the boundary

a′(1) ∝ r′(1)r′′(1) + z′(1)z′′(1) = r′(1)r′′(1) = 0. (3)

The fact that r′(1) is not equal to zero leads to r′′(1) = 0.

II. LOSS FUNCTION OF THE PINN

A. Forward problem

In order to solve ordinary differential equations with
PINN, we need to specify the loss function of the neu-
ron network. The forward problem is equivalent to solve
the variational equations eqr and eqz with the coordi-
nates constraint (1) and the boundary conditions (2),
provided the values of all the parameters are given. The
loss function of the forward problem Lfor therefore can
be constructed as the sum of three terms

Lfor = Leqs + Lcon + Lbc, (4)

with Leqs from the two variational equations, Lcon from
the coordinates constraint, and Lbc from the boundary
conditions. Their explicit expressions are given below:

Leqs =
1

N + 1

N−1∑
i=1

eqr(i)2 +
1

N + 1

N−1∑
i=1

eqz(i)2, (5)

Lcon =
1

N + 1

N−1∑
i=1

a′(i)2, (6)

Lbc = [r(0)− 0.001]
2
+ [r(1)−Rb]

2
+ r′′(0)2 + r′′(1)2

+ [z(0)− z0]
2
+ z′(0)2 + z′(1)2 + z(0)2, (7)

where f(i) represents the value of the function f eval-
uated at u = i

N . When the expression involves deriva-
tives, we use automatic differentiation function provided
by tensorflow. We find that N = 16 is able to solve the
equations to a good accuracy in a reasonable time.
We are now in a position to train the neuron network

to minimize the loss function Lfor. Based on our experi-
ences, we find that applying a so-called Hard Constraints
Method [1, 2] has a higher prediction accuracy than di-
rectly minimizing the loss function Lfor (Eq. 4). The
idea of the Hard Constraints Method is to introduce a
transformation r(u) → r̃(u), and z(u) → z̃(u) such that
the transformed r̃(u) and z̃(u) automatically satisfy the
boundary conditions. Specifically, note that there are 4
boundary conditions for each neural network output r(u)
and z(u), we introduce the following transformations

r̃(u) = r(u) + a1 + b1u+ c1u
2 + d1u

3 (8)

and

z̃(u) = z(u) + a2 + b2u+ c2u
2 + d2u

3, (9)

and the coefficients in the polynomials can be solved by
requiring r̃(u) and z̃(u) to fullfil the boundary conditions.
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After the transformation, we can remove the bound-
ary condition term Lbc in the loss function Lfor to get a
simpler loss function

Lfor =
1

N + 1

N−1∑
i=1

ẽqr(i)2 +
1

N + 1

N−1∑
i=1

ẽqz(i)2

+
1

N + 1

N−1∑
i=1

ã′(i)2, (10)

where ẽqr, ẽqz and ã′ become equations with r̃, z̃ and
their derivatives.

B. Inverse problem

Given an experimental profile which is a number of
discrete points [ri, zi] that depicts the membrane shape,
we first perform a symmetrization procedure to obtain
a function [rexp(u), zexp(u)] that has the mirror symme-
try, which is explained in Supplementary Information
III. The inverse problem aims to find model parame-
ters such that the transformed ML output [r̃(u), z̃(u)]
not only satisfies the variational equations, but also
matches the symmetrized experimental profile . The loss
function of the inverse problem therefore needs to in-
corporate Ldata which measures the difference between
the ML output and the symmetrized experimental pro-
file. Specifically, we do interpolation of R(Zj) at equally
spaced Zj = z0j/M, j = 0, 1, ...,M for both the ML out-
put [r̃(u), z̃(u)] and the symmetrized experimental profile
[rexp(u), zexp(u)]. The loss function Ldata then takes the
squared distance between the two interpolated datasets,
i.e.,

Ldata =

M∑
j=0

[
R̃(Zj)−Rexp(Zj)

]2
, (11)

in which R̃(Zj) and Rexp(Zj) represent the interpolation
results of the ML output and the symmetrized experi-
mental profile at the same point Zj , respectively.

III. SYMMETRIZATION ALGORITHM

In order to learn the model parameters, we need to
compare the ML output with the experimental data,
which is structured in 2D coordinates (xi, yi) that gives
a single 2D cross-section of the 3D membrane. One ex-
ample of the 2D cross-section curves is shown in Fig. S1.
As the cell membrane is a 3D structure and only a 2D
cross-sectional electron microscope image cannot restore
entire asymmetric membrane shape, a symmetrization
procedure is applied on the experimental profile to be
compared with the ML output.

The procedure is conducted in 3 steps: (1) pick
up the point (x0, y0) which has the largest yi and di-
vide the points into two groups (xLj , y

L
j ) and (xRk , y

R
k )

with the left group xLj < x0 and xRk > x0, as il-

lustrated in Fig. S1a. (2) Calculate the arclength sL

or sR from (x0, y0) along the left and right curve re-
spectively, with each small segment having a length

of ∆SL
j =

√
(xLj − xLj+1)

2 − (yLj − yLj+1)
2 and ∆SR

k =√
(xRk − xRk+1)

2 − (yRk − yRk+1)
2, and normalize the ar-

clength to the same interval uLj = sLj /S
L and uRk =

sRk /S
R with SL or SR denoting the total arclength of

the left and right curve respectively. (3) Interpolate
the function that maps the re-scaled arclength uLj and

uRk to point (xLj , y
L
j ) and (xRk , y

R
k ), and then average

(xL(u), yL(u)) and (xR(u), yR(u)) with the same u to
get the symmetrized profile (r(u), z(u)) with r(u) =
1
2 [x

L(u) + xR(u)] − x0 and z(u) = 1
2 [y

L(u) + yR(u)], as
illustrated in Fig. S1b.

IV. FINITE DIFFERENCE METHOD

In order to verify whether the ML output [r(u), z(u)]
satisfies the variational equations eqr and eqz governed
by the Helfrich theory, we adopt another equivalent form
of the variational equations by introducing a new vari-
able ψ(u), which is the tangent angle spanned between
the tangential direction and the horizontal direction [3].
We solve the shape equations with the MATLAB func-
tion bvp4c, which is a solver designed for boundary value
problem (BVP) of ordinary differential equations. The
method is based on the finite difference method that im-
plements the three-stage Lobatto IIIa formula [4]. The
tangential angle ψ(u) satisfies the following geometric re-
lations:

r′(u) = a cosψ(u), (12)

and

z′(u) = −a sinψ(u), (13)

where a is assumed to be a constant as explained in Sup-
plementary Information I.

To calculate the force f mentioned in the main text,
we introduce another term in the free energy

Ef = −f [z(0)− z(1)] (14)

to account for the work done by a point force f to pull the
membrane from 0 to z0. The force f can be considered as
a Lagrangian multiplier to impose the membrane height
z(0) − z(1). The total free energy of membrane can be
rewritten as

L = 2π

∫ 1

0

L [r, r′, z, z′, ψ, ψ′, a, α, β;κ, σ, p, f ] du, (15)
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FIG. S1. Symmetrization of the experimental profile. (a) The experimental profile curve is divided into a left part (xL
j , y

L
j ) and

a right part (xR
k , y

R
k ) from the highest point (x0, y0). Each part has its arclength sLj or sRk , its total arclength SL or SR, and

its re-scaled arclength uL
j = sLj /S

L and uR
k = sRk /S

R. (b) Symmetrized experimental profile by taking the average of the left
part and the right part at the same re-scaled arclength.

in which

L =
1

2
κ

(
sinψ

r
+
ψ′

a

)2

ra+ σra+
p

2
r2a sinψ

− f

2π
a sinψ + α(r′ − a cosψ) + β (z′ + a sinψ) . (16)

Here α(u) and β(u) are two Lagrangian multipliers to im-
pose the geometric relations (12) and (13). By perform-
ing variations to the variables ψ, r and z, respectively,
we obtain 3 corresponding equations

ψ′′ =
a2pr cosψ

2κ
− a2f cosψ

2rκπ
+
a2α sinψ

rκ

+
a2 cosψ sinψ

r2
+
a2β cosψ

rκ
− aψ′ cosψ

r
, (17)

α′ = aσ + apr sinψ − aκ sin2 ψ

2r2
+
κ(ψ′)2

2a
, (18)

β′ = 0. (19)

By performing variations to the variable a, we obtain
a conserved quantity

H(u) =
1

2
pr2 sinψ − f sinψ − α cosψ

+ β sinψ +
1

2
κr

[(
sinψ

r

)2

−
(
ψ′

a

)2
]
+ σr = 0. (20)

Eqs. (12), (13), and (17), (18), (19) constitute a system
of ordinary differential equations, in which only Eq. (17)
is second order, and all the others are first order. The
system is equivalent to a total number of 6 first order

ordinary differential equations. In addition, we have 2
unknown parameters, one being the total arclength a,
the other being the force f . To complete the equations,
we need a total number of 8 boundary conditions. They
are listed below:



ψ(0) = 0
r(0) = 0
z(0) = z0
β(0) = 0
H(0) = 0
ψ(1) = 0
z(1) = 0
r(1) = Rb

. (21)

In summary we have constructed a well-defined BVP
that is made of Eqs. (12), (13), and (17), (18), (19), two
unknown parameters a and f , as well as 8 boundary con-
ditions.

V. ROBUSTNESS TEST AGAINST NOISE

In order to test the performance of our method in the
presence of data noise, we use the FD method to solve
the membrane shape equations for a particular set of pa-
rameters κ = 20 kBT , p = 1 kPa, σ = 0.01 pN/nm,
Rb = 50 nm, z0 = 100 nm to get the membrane profile
[r(u), z(u)]. We then interpolate the profile at a num-
ber of discrete points Xi = [r(ui), z(ui)] and add noise
to the data Yi = Xi + [ϵ1i , ϵ

2
i ] to generate an artificial

experimental profile Yi, where ϵ
1
i and ϵ2i are Gaussian

white noise with a zero average and a standard deviation
of σϵ. The learning procedure is then used to extract the
model parameters from these generated profiles and the
results are shown in Fig. S3. If the standard deviation
of the Gaussian white noise is smaller than 1 nm, our
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method gives a both accurate and precise estimation of
the parameters. However, when the standard deviation
is greater than 1.5 nm, though the mean value over 10

repeated learnings remains close to the ground truth, the
standard deviations become very large.
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FIG. S2. Statistical analysis of ML-learned parameters with c0. Model parameters as a function of the membrane height, with
the membrane tension σ in (a), the osmotic pressure p in (b), and the spontaneous curvature c0 in (c).
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FIG. S3. Robustness test of the learning method against noise. (a) The learned membrane tension σ as a function of the noise
strength (std). The blue dots represent the mean value over 10 repeated learnings and the error bars indicate the standard
deviation. (b) The learned osmotic pressure p as a function of the noise strength. The ground truth parameters are κ = 20kBT ,
p = 1kPa, σ = 0.01pN/nm, Rb = 50 nm, z0 = 100 nm.


