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1 Models of MJP Dynamics

1.1 Base Model

Following Fei et al.,1 we seek to describe the motion of a magnetic sphere (radius a) moving
at the interface of a spherical drop (radius R) due to a time-varying magnetic field B(t). The
dynamics of the rigid particle is governed by Newton’s laws of linear and angular motion

M
dU

dt
= Fm + Fh + Fc (S1)

I
dΩ

dt
= Tm + Th + Tc (S2)

where M and I are the mass and moment of inertia of the (isotropic) particle, U and Ω are
its linear and angular velocities, and F and T describe the various forces and torques acting
on the particle.

The magnetic force and torque on the particle are related to its magnetic moment m as

Fm = m · ∇B = 0 and Tm = m×B (S3)

Here, we consider a spatially uniform field, in which the field gradient and therefore the
magnetic force are identically zero. Moreover, we model the magnetic moment m as a
constant vector directed parallel to the Janus equator that rotates in lock-step with the
particle.

The capillary force and torque are assumed to constrain the particle position and orien-
tation as described by the kinematic conditions

n ·U = 0 and Ω× n = U · ∇n (S4)

where n is the unit vector normal to the drop interface. The particle can translate parallel to
the interface and rotate normal to the interface; however, other motions are prohibited. This
rigid constraint is appropriate when capillary forces greatly exceed magnetic forces—that is,
when γa2/mB � 1 where γ is the interfacial tension. For a spherical interface of radius R,
the kinematic constraints of equation (S4) can be simplified as

U = R(Ω× n) (S5)

At low particle Reynolds numbers (Re = ρUa/η � 1), the hydrodynamic force and
torque on the particle depend linearly on its linear and angular velocity as[

Fh

Th

]
= −

[
RFU RFΩ

RTU RTΩ

]
·
[
U
Ω

]
(S6)

where RFU , RFΩ, RTΩ, and RTΩ are the components of the hydrodynamic resistance tensor.
For small spheres (a� R) adsorbed symmetrically at the interface between two immiscible
liquids of equal viscosity η, the resistance tensors can be approximated as by those of a
sphere in a single unbounded fluid

RFU = 6πηaδ, RFΩ = RTU = 0, RTΩ = 8πηa3δ, (S7)
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This approximation is valid only for particles that satisfy the kinematic conditions of equation
(S4).

On the time scale of the driving field (i.e., the frequency ω), effects due to particle
inertia are negligible when Mω/6πηa � 1 (or, equivalently, when Iω/8πηa3 � 1). As this
condition is well satisfied in the experiments, we neglect the inertial terms on the left hand
side of equations (S1) and (S2). The resulting balance of forces implies that the capillary
force is proportional to the particle velocity

Fc = 6πηaU (S8)

where Fc · n = 0 in accordance with the kinematic constraint (S4). Similarly, the balance of
torques implies that

Tc = 8πηa3Ω−m×B (S9)

Magnetic torques directed parallel to the surface normal n is resisted by viscous friction;
those perpendicular to the surface normal are instead resisted by capillary torques that act
to prevent deformation of the liquid interface.

To close the system of equations and solve for the particle velocity, we consider that the
energy supplied by the magnetic torque is dissipated by particle motion through the viscous
fluid

Tm ·Ω + Th ·Ω + Fh ·U = 0 (S10)

By contrast, the capillary constraints perform no work on the system. Substituting the
kinematic constraint and making use of common vector identities, we obtain

0 = Tm ·Ω− 8πηa3Ω ·Ω− 6πηaR2(Ω× n) · (Ω× n))

0 =
(
Tm − 8πηa3Ω− 6πηaR2(δ − nn) ·Ω

)
·Ω

0 = Tm − 8πηa3Ω− 6πηaR2(δ − nn) ·Ω
(S11)

To summarize, the angular velocity of the particle is related to the magnetic torque as

Ω =

(
δ − nn

8πηa3 + 6πηaR2
+

nn

8πηa3

)
· (m×B) (S12)

where the magnetic moment is directed always perpendicular to the interface, m · n = 0.

Numerical Integration

To integrate the particle dynamics, we introduce two coordinate systems: the world frame
and the particle frame.2 Vectors expressed in the particle frame (denoted by a prime, B′)
are related to the same vector expressed in the world frame as B′ = Rq(q)B where Rq is the
rotation matrix parameterized by the unit quaterion q

Rq(q) =

q2
0 + q2

1 − q2
2 − q2

3 2q0q2 + 2q1q2 2q1q3 − 2q0q2

2q1q2 − 2q0q3 q2
0 − q2

1 + q2
2 − q2

3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 q2
0 − q2

1 − q2
2 + q2

3

 (S13)
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In the particle frame, the magnetic moment is constant and directed in the x′ direction
such that m′ = [m, 0, 0]T ; the Janus director is directed in the z′ direction. In the world
frame, the precessing magnetic field with frequency ω and angle ϕ is specified as

B(t) =

B sinϕ cosωt
B sinϕ sinωt
B cosϕ

 (S14)

The quaternion q(t) characterizing the particle orientation evolves in time as

dq

dt
=

1

2
W ′(q)TΩ′

dq

dt
=
W ′(q)T

6πηaR2

(1 + 4a2

3R2 )−1 · ·
· (1 + 4a2

3R2 )−1 ·
· · ( 4a2

3R2 )−1

 (m′ ×B′(t))
(S15)

where the matrix W ′(q) relating the angular velocity to the quaternion rates is given by

W ′(q) =

−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0

 (S16)

At time t = 0, the particle is positioned at the lower pole of the drop, x(0) = [0, 0,−R]. Its
magnetic moment is assumed to point in the x-direction, which corresponds to the preferred
alignment in the field at t = 0. The initial quaternion is therefore

q(0) = [0, 1, 0, 0]T (S17)

From this initial orientation, equation (S15) for the quaternion rates is integrated numerically
in Julia using the KenCarp4 method for stiff ODEs with moderate precision. From the
solution, the particle trajectory in the world frame x = [x, y, z] is given by

x(t) = Rq(q(t)) [0, 0, R]T (S18)

1.2 Gravity Model

The gravity model augments equation (S1) with an additional force due to gravity

Fg = Mg (S19)

where g is the acceleration due to gravity, and M is the buoyant mass of the particle in the
fluid. This additional force is is included in the energy balance (S10) to give

Tm ·Ω + Fg ·U + Th ·Ω + Fh ·U = 0 (S20)

Making use of the kinematic constraint, this equation implies that

0 = Tm ·Ω +RFg · (Ω× n)− 8πηa3Ω ·Ω− 6πηaR2(Ω× n) · (Ω× n)

0 =
(
Tm +R(n× Fg)− 8πηa3Ω− 6πηaR2(δ − nn) ·Ω

)
·Ω

0 = Tm +R(n× Fg)− 8πηa3Ω− 6πηaR2(δ − nn) ·Ω
(S21)
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The angular velocity of the particle is related to the magnetic torque and the gravitational
force as

Ω =

(
δ − nn

8πηa3 + 6πηaR2
+

nn

8πηa3

)
· ((m×B) +R(n× Fg)) (S22)

Numerical Integration

The particle position and orientation is parameterized by the unit quaternion q(t), which
evolves in time as

dq

dt
=
W ′(q)T

6πηaR2

(1 + 4a2

3R2 )−1 · ·
· (1 + 4a2

3R2 )−1 ·
· · ( 4a2

3R2 )−1

 ((m′ ×B′(t)) +RMb(n′ × g′)) (S23)

Here, the unit normal vector in the particle frame is n′ = [0, 0, 1]T . The acceleration due
to gravity in the world frame is g = [0, 0,−g]T , which is rotated into the particle frame
as g′ = Rq(q)g. Compared to the base model, the gravity model introduces one additional
parameter—namely, the gravitational torque RMg. Equation (S23) is integrated numerically
using the same method described for the base model.

1.3 Angle Model

The angle model considers the possibility that the particle’s magnetic moment may have
components both parallel and normal to the liquid interface. In the particle frame, the
magnetic moment is given by

m′ = [m cosµ, 0,m sinµ]T (S24)

where the angle µ describes the particle tilt with respect to the interface. Substituting this
expression for the magnetic moment to equation (S15), the particle dynamics is integrated
numerically as described for the base model.

1.4 Paramagnetic Model

The paramagnetic model considers that the particle’s magnetic moment has additional con-
tributions proportional to the applied field

m = mp + α ·B (S25)

where mp is the permanent magnetic moment, and α is the magnetic polarizbility tensor.
For a Janus sphere with director n, the axial symmetry of the particle suggests that the
polarizability tensor has the form

α = α⊥(δ − nn) + α‖nn (S26)

Importantly, paramagnetic contributions to the magnetic torque depend only on the differ-
ence between the two polarizabilities, ∆α = α⊥ − α‖. For the purpose of integrating the
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particle dynamics, we therefore write the magnetic moment in the particle frame as

m′ =

mp

0
0

+

∆α 0 0
0 ∆α 0
0 0 0

B′ (S27)

Compared to the base model, the paramagnetic model introduces one additional parameter—
namely, the polarizability difference ∆α. Substituting this expression for the magnetic mo-
ment to equation (S15), the particle dynamics is integrated numerically as described for the
base model.

1.5 Correlated Noise

Following Sivia3, we adopt the following likelihood function for the N -dimensional data
vector D

p(D | θ,M) =
1√

(2π)N det(C)
exp

(
−1

2
(F (θ)−D)>C−1(F (θ)−D)

)
(S28)

where C is the N × N covariance matrix, and F (θ) is the N -dimensional vector of model
predictions given parameters θ. To describe correlated noise, the covariance matrix C with
elements Cjk is modeled as

Cjk = σ2 exp(−|tj − tk|/τ) = σ2ε|j−k| (S29)

where σ is the noise magnitude, τ is the correlation time, tj denotes the time of data point
j, and ε ≡ exp(−∆t/τ) for a constant time step ∆t = tj+1− tj. For a constant time step ∆t,
the inverse covariance matrix is tridiagonal, and the log-likelihood can be evaluated more
quickly as

ln p(D | θ,M) = constant− 1

2

[
(N − 1) ln(1− ε2) +

Q

1− ε2

]
(S30)

where

Q = χ2 + ε
[
ε(χ2 − φ)− 2ψ

]
χ2 =

N∑
k=1

R2
k, φ = R2

1 +R2
N , ψ =

N−1∑
k=1

RkRk+1

(S31)

Here, Rk = Fk −Dk denotes the residual between the model prediction Fk and the observed
datum Dk. Note that the unspecified constant in equation (S30) can be neglected for the
purpose of parameter estimation, but must be evaluated explicitly during model selection.
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2 Prior distributions

Parameter Mean Std. Dev.

shared

log-magnetic moment, log10(m/mref) 0.5 1.0
Drop radius, R 68 px 0.25 px
Tilt angle, µ 0 rad 0.1 rad
Polarizability diff., ∆α / ∆αref 2 1
Log-bouyant mass, log10(M/Mref) −2 1

per exp.
Initial particle location (x, y) Trackpy 5 px
Initial particle orientation 0 rad 3 rad
Field phase 0 rad 1 rad

Table SI: Summary of priors distributions used. All priors are normally distributed with
quoted means and standard deviations. Note that 1 pixel (px) = 0.58 µm. Reference
quantities used to scale model parameters are mref = 10−14 A m2, ∆αref = 4×10−12 A2 m3/N,
Mref = 3× 10−14 g.
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3 Bayesian model selection

We approximate the posterior distributions for each batch by normal distributions such that

p(θ | Db,M) ∝ p(θ |M)p(Db | θ,M) ≈ CbN (θ | µb,Σb) (S32)

where µb and Σb denote the mean and covariance of the batch posterior obtained by the
Laplace approximation for b = 1, . . . , B. The constant Cb is identified as the model likelihood
p(Db |M) for the batch-level data Db. Assuming a normal prior with mean µ and covariance
Σ, the joint posterior conditioned on all batches is also normal

p(θ | D) =
p(θ |M)

p(D |M)

B∏
b=1

CbN (θ | µb,Σb)

p(θ |M)
= N (θ | µp,Σp) (S33)

with covariance Σp and mean µp given by

Σp =

(
−(B − 1)Σ−1 +

B∑
b=1

Σ−1
b

)−1

µp = Σp

(
−(B − 1)Σ−1µ+

B∑
b=1

Σ−1
b µb

) (S34)

The model likelihood can then be expressed as

p(D |M) =
|2πΣp|1/2

|2πΣ|1/2
exp

(
−1

2
(µp − µ)TΣ−1(µp − µ)

)
×

B∏
b=1

Cb|2πΣ|1/2

|2πΣb|1/2
exp

(
−1

2
(µp − µb)TΣ−1

b (µp − µb) +
1

2
(µp − µ)TΣ−1

b (µp − µ)

) (S35)

where the first term is the Occam factor, and the second term is the likelihood forD evaluated
for the most probable parameters µp.

In practice, we use the parameter estimate of equation (S34) to initialize the gradient-
driven optimization of the log-posterior conditioned on all the data—that is, ln p(θ | D,M).
The resulting optimum is assumed to be the mode of the posterior distribution. The posterior
convariance is approximated at this point using the Laplace approximation.
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4 Information content of an experiment

Following Lindley,3,4 the value of data y in reducing our uncertainty of model parameters θ
can be quantified as the Kullback–Leibler (KL) divergence between the posterior and prior
distributions

u(y) =

∫
p(θ | y) ln

(
p(θ | y)

p(θ

)
dθ (S36)

In the present analysis, both the prior p(θ) and the posterior p(θ | y) are approximated by
multivariate normal distributions with respective means µπ and µp and covariance matrices
Σπ and Σp. The above integral can then be evaluated to obtain

u(y) =
1

2

[
ln
|Σπ|
|Σp|

− d+ tr
(
Σ−1
π Σp

)
+ (µp − µπ)TΣ−1

π (µp − µπ)

]
(S37)

where d is the number of parameters. This expression was used to compute the amount of
information gained by analysis of each batch using the favored ag-model.

Batch Information (bits)
1 4154
2 912
3 676
4 8680
5 1262

combined 11023

Table SII: Information gained from the prior distribution for the favored ag model, for all
shared parameters.
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5 Implementation details

Source code for the analyses described in this paper can be found at https://github.com/
bishopgroup/MJPinference. Below, we summarize the packages used and provide code
snippets for different elements of the analysis.

5.1 Package versions

Julia v1.8 was used for all statistical analysis. The environment specification is included
below.

Package Name Version
DiffEqBayes v3.0.0
DiffEqSensitivity v6.79.0
Distributions v0.25.70
ForwardDiff v0.10.32
HypothesisTests v0.10.11
Interpolations v0.14.7
LatinHypercubeSampling v1.8.0
NLopt v0.6.5
ODEInterfaceDiffEq v3.11.0
OrdinaryDiffEq v6.24.4
StatsBase v0.33.21

5.2 Code snippets

Correlated Noise (exact)

This function is calculates the log-likelihood but is extremely slow due to the matrix inverse
operation. It is used for model selection but not for parameter estimation.

function get_exact_corrlated_LL(r,epsilon ,sigma)

k = length(r)

C = Matrix ([ sigma^2 * epsilon^abs(i-j) for i in 1:k, j in 1:k])

pi_factor = -k/2*log (2*3.14159265359)

det_factor = -0.5 * (2*k*log(sigma) + (k-1)* log(1-epsilon ^2))

chi_factor = -0.5 * (r’ * inv(C) * r)

return pi_factor + det_factor + chi_factor

end

Correlated Noise (proportional)

This function returns the log-likelihood to within an additive constant and is significantly
faster than the function above. It is used during optimization to identify the most probable
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parameters.

function get_proprotional_corrlated_LL(r, epsilon , sigma)

#8.34 Sivia

N = length(r)

r2 = r .^ 2

phi = r2[1] + r2[end]

chi2 = sum(r2)

psi = sum(r[1:end -1] .* r[2:end])

Q = chi2 + epsilon * (epsilon * (chi2 - phi) - 2 * psi)

L = -1 / 2.0 * ((N - 1) * log(1 - epsilon ^2) +

2 * N * log(sigma) + Q / (sigma ^2 * (1 - epsilon ^2)))

return L

end

z-score

This function evaluates the z-score described by Eq (5) in the main text.

function zscore(mu1 , Sigma1 , mu2 , Sigma2 , n_par)

r2min = abs.(mu2[end -n_par +1:end] - mu1[end -n_par +1:end])’ *

inv(Sigma1[end -n_par +1:end , end -n_par +1:end] +

Sigma2[end -n_par +1:end , end -n_par +1: end]) *

abs.(mu2[end -n_par +1:end] - mu1[end -n_par +1:end])

return r2min

end

KL Divergence

This function evaluates the KL-divergence between two multivariate normal distributions
with means µ1 and µ2 and covariance matrices Σ1 and Σ2.

function KL(mu1 , Sigma1 , mu2 , Sigma2 , n_par)

#Calculate KL divergence from 1 -> 2, considering n parameters.

mu1g = mu1[end -n_par +1: end]

Sigma1g = Sigma1[end -n_par +1:end , end -n_par +1: end]

mu2g = mu2[end -n_par +1: end]

Sigma2g = Sigma2[end -n_par +1:end , end -n_par +1: end]

iSigma2 = inv(Sigma2g)

kl = 0.5 * (log(abs(det(Sigma2g) / det(Sigma1g ))) - n_par +

tr(iSigma2 * Sigma1g) +

Transpose(mu2g - mu1g) * iSigma2 * (mu2g - mu1g))

return kl

end
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