Supplementary Information for: Controlling the size and adhesion of DNA droplets using surface-enriched DNA molecules

Daqian Gao, Sam Wilken, Anna Nguyen, Gabrielle R. Abraham, Tim Liedl, and Omar A. Saleh

January 8, 2024

Table S1: Sequences of oligos used to assemble NSs. For fluorescent visualization, 5% of oligo 1 is replaced by oligo 1', which contains a Cy5 fluorescent tag, indicated with [c] in the table.

Name	Sequen	ce															
oligo 1	CG	A TCG	ACG	CTG	CAA	CTG	GAG	GAT	ACG	AAG	CCG	TGG	CAA	GTC	AGG	TGC	G
oligo 1'	[c] CG	A TCG	ACG	CTG	CAA	CTG	GAG	GAT	ACG	AAG	CCG	TGG	CAA	GTC	AGG	TGC	G
oligo 2	CG	A TCG	ACG	GCT	CAG	TCG	GTT	TCC	GAG	AAC	GTA	TCC	TCC	AGT	TGC	AGC	G
oligo 3	CG	A TCG	ACG	AGC	GTT	GGA	CAT	GTA	TCG	AAC	TCG	GAA	ACC	GAC	TGA	GCC	G
oligo 4	CG	A TCG	ACG	CAC	CTG	ACT	TGC	CAC	GGC	AAC	GAT	ACA	TGT	CCA	ACG	CTC	G

Table S2: Sequences of primers for synthesis of DNA surfactant, where [a] refers to an abasic site, and [c] refers to a Cy3 fluorescent tag. Forward primer 1 was used for all experiments, except the confocal visualization, for which forward primer 2 was used.

Name	Lambda DNA index	Sequence
Forward Primer 1	1136-1155	TCG ATC G [a] TAA CAC GCT CAC CAT GAA GC
Forward Primer 2	1136-1155	TCG ATC G [a][c] TAA CAC GCT CAC CAT GAA GC
Reverse Primer	1536-1517	GCT CGC AGA GAT AAA ACA CG

Figure S1: Fluorescent micrographs of NS droplets in solutions containing (left) only 2 μ M NS, (center) 2 μ M NS and long DNA with complementary sticky end that would bind to NS arms, and (right) 2 μ M NS and long DNA with non-binding sticky ends. The scale bar is 100 μ m. b) Images of the same solutions as in (a) near a hydrophilic (BSA coated) surface. The scale bar is 40 μ m. In both sets of images, the effects on adhesion and droplet size only occurs when the long DNA carries specific binding ends, indicating that the effects are not due to non-specific coating by long DNA.

Figure S2: Time-course of droplet size distributions (CCDF), for the solutions indicated. As discussed in the methods, solutions were mixed and incubated on a rotator for 2 hours prior to addition to a flow cell; the time indicated here in the legends refers to the time since addition to the flow cell. While the NS-only solution reaches a stable droplet distribution relatively rapidly, addition of the surfactant significantly slows droplet growth, which we attribute to coalesence that is impeded by the surfactant layer. That said, the surfactant effect is not absolute, and eventually even surfactant-laden solutions result in droplets of similar size as NS-only solutions.