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Section S1: Theoretical Analysis

Derivation of Equations

Because of the small value of the fluid layer thickness H0 the system is highly dissipative and vertical velocities are very

small compared with horizontal velocities (Vz ⌧ Vx). Under these conditions lubrication approximation gives the equation

0 = �@xp(x, t) + ⌘@
2
xVx (S 1)

where p = p(x, t) is the pressure. Note that Vx = Vx(x, z, t), but the pressure is a function of x and t. Integration of this

relation gives Vx =
1
2⌘ @xp(x, t)z

2
+A(x, t)z +B(x, t) where A and B are found by applying the two boundary conditions

v = Vx|z=0 (S 2)

⌧ = ⌘@zVx|z=H (S 3)

where ⌧(x, t) is the shear stress at z = H(x, t) and v(x, t) is the velocity at the bottom. The general solutions for the horizontal

and vertical velocity are
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Here the vertical velocity is obtained from the integration of the incompressibility condition @xVx+@zVz = 0 with the boundary

condition vy |z=0 = 0.

The previous equations are written in terms of eulerian coordinates; however, the description of the film deformation

requires the use of lagrangian coordinates. The two dimensional deformation of the film is given by the transformation

in Monge coordinates x = s + u(s, t) and z = H(s, t), where s gives the length along the centerline previous to the film

deformation (see Fig. S1). The non-slip boundary condition connects the fluid velocities with the film deformation

@tu(s, t) = Vx[s+ u(s, t), H(s, t), t] (S 6)

@tH(s, t) = Vz [s+ u(s, t), H(s, t), t] (S 7)

To evaluate Eq. (S 7), we use incompressibility in the form Vz(x, z) = �
R
z

0 dz
0
@xVx(x, z

0
) which gives Vz [x,H(x, t)] =

�
R
H(x,t)
0 dz

0
@xVx(x, z

0
) = �@x

R
H(x,t)
0 dz

0
Vx(x, z

0
)� Vx[x,H(x, t)]@xH(x, t). Equations (S 6) and (S 7) become
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Note that the left hand side is written in lagrangian coordinates and the right hand side in eulerian coordinates. To compare

these equations with previous formulations [S1, S2, S3], we observe that the relation H(x, t) = H[s+u(s, t), t] = H(s, t) implies

the kinematic relation

@tH(s, t) = @tH(x, t) + @tu(s, t)@xH(x, t) (S 9)

Therefore the equation for the height in (S 8) can be written as

@tH(x, t) = @x
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3
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� vH

�
(S 10)

1



which is consistent with the conservation law @tH + @x⇥ = 0 in eulerian coordinates, where ⇥ is the flow per unit of width

across a vertical section of the fluid layer. Because we need to study small perturbations of the film height, the representation

in Eqs. (S 8) is more convenient. Specifically, the convective term v@xH in Eq. (S 10), which is of the form ⇠ x@xH (see

next section) and is not invariant under translations, cancels out when time derivatives are written in Lagrangian coordinates.

Further simplifications of these equations give

@tu(s, t) = �
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Fig. S 1. Schematic of the physical configuration for x > 0. The fluid layer of initial height H0 follows the bottom that

contracts with the velocity v. The part of the fluid which is free grows with the homogeneous solution H
flat

and the part

which is covered by the film wrinkles and folds. The deformation of a material point in the film is described by the transformation

(x, z) = [s+ u(s, t), H(s, t)].

Flat Solution

For a free surface p = ⌧ = 0 the horizontal velocity of the fluid corresponds to the velocity of the bottom @tu(s, t) = v and

the vertical velocity is given by the incompressibility condition @tH(s, t) = �@xvH. The deformation of the bottom is defined

by the transformation

x = s� ✏̇ts (S 12)

where x is the current horizontal position and s the position before deformation. The velocity of the bottom is then v =

@tx = �✏̇s in lagrangian coordinates. It also allows to find the vertical velocity as @tH(s, t) = �@xvH = �(@s/@x)@svH =

�✏̇H/(1� ✏̇t). Thus, we have the two equations and homogeneous solutions

@tu(s, t) = �✏̇s �! u
flat

(s, t) = �✏̇ts

@tH(s, t) = �
✏̇

1�✏̇t
H �! H

flat
(s, t) =

H0

1� ✏̇t
(S 13)

These solutions explain Eq. (3) in the main text. Due to liquid incompressibility, H
flat

is determined entirely by the horizontal

displacement.
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Constitutive relations for p and ⌧ .

Because the deformation of the film happens at a time scale faster than the deformation of the fluid, we can use the

equilibrium equations for an elastic film to compute bending and stretching. Assuming a deformation in the plane x � z, the

equilibrium of forces is given by the equation

d~F

ds
+ ~K = 0 (S 14)

where ~F = Fxx̂+Fz ẑ is the force per unit of width on the cross section of the film and ~K is the external force per unit of area

applied to the film. While this description is commonly applied to beams, it is well known that it also applies to films when

they are wide enough to avoid 3D e↵ects, such as anticlastic curvature. In our system, the external force can be approximated

in the small deflection limit for ~K ⇡ �⌧ x̂+pẑ (see Fig S1). It gives a relation between the horizontal force per unit of width and

the shear, @sFx = ⌧ . The force Fx is associated with the stretching of the film through the constitutive relation Fx = Y @su,

where Y = Eh/(1 � ⌫
2
) represents the sti↵ness under plane-strain conditions. Thus, the shear force is given in terms of the

displacement as

⌧ = @sFx = Y @
2
su (S 15)

The moment balance gives the equation

d ~M

ds
+ t̂⇥ ~F = 0 (S 16)

Here ~M = B@
2
sHx̂⇥ ẑ, where B = Eh

3
/12(1� ⌫

2
), and t̂ is the tangent to the x� z curve defined by the film centerline. For

small deflections, the tangent is approximated by t̂ ⇡ x̂+ @sHẑ. The moment balance equation is then

B@
3
sH + Fz � Fx@sH = 0 (S 17)

Applying @s(·) to this equation and using the relation dFz/ds = �p, we obtain for the pressure

p = B@
4
sH � Y @s(Fx@sH) (S 18)

where Fx = Y @su.

Weakly Nonlinear Model

Equations (S 15) and (S 18) are approximations for small deflections. In the same order of approximation, we can

approximate x ⇡ s in the right hand side of Eqs. (S 11). Additionally, we can neglect terms of the order O[(@xH)
2
] or higher

in Eqs. (S 11) and replace the velocity of the bottom rubber by v = @tu
flat

where u
flat

is defined in Eqs. (S 13). It provides

the equivalent set (where the arclength s is denoted as x in the following).

@tu(x, t) = �
1
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H (S 19)

Introducing the constitutive relation for the pressure and shear and neglecting again terms of the order O[(@xH)
2
], we obtain

two equations for u and H.

@tu(x, t) = �
1

2⌘
H

2
[B@

5
xH � Y @

2
x(@xu@xH)] +

Y

⌘
H@

2
xu� ✏̇x
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H (S 20)
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We observe that there are two times scales in these equations. The height grows with the time scale ✏̇
�1

(see solution in Eqs. (S

13)), and because our analysis is valid within the framework of linear elasticity (✏ = ✏̇t ⌧ 1) we expect the equations to be

correct for t ⌧ ✏̇
�1

. A second time scale is provided by the di↵usion term in the right hand side of the first equation. It

defines a di↵usion coe�cient D = Y H/⌘ ⇡ Y H0/⌘. The e↵ect of this term was extensively studied in Chatterjee et al. [S3],

where they demonstrated that a stationary solution for the strain (@tu = 0) occurs for times on the order of tD = L
2
/D. Here,

L represents the half-length of the film, as shown in Fig. S1. The stationary solution is obtained by balancing the last two

terms of the equation for horizontal displacement after setting @xH = 0, resulting in the equation 0 = D@
2
xu � ✏̇x. It yields

� = @xu = �✏̇(L
2
� x

2
)/(2D) for a system defined in the range �L < x < L with the boundary condition � = 0 at the free

ends.

To understand how the flat state solution defined in Eqs. (S 13) is a valid base solution before buckling, we observe that

derivatives are of the order @x ⇠ 1/L and @t ⇠ 1/tD and rescale the equations by using the dimensionless variables x̄ = x/L,

ū = u/L, t̄ = t/tD and H̄ = H/H0. It yields

@t̄ū(x̄, t̄) = �
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H̄ (S 21)

where ⇤ = H0/L and ✏D = ✏̇tD. Taking the limit ⇤ ! 0, we obtain the set of equations

@t̄ū(x̄, t̄) = H̄@
2
x̄ū� ✏Dx̄ (S 22)

@t̄H̄(x̄, t̄) = �
1

2
H̄

2
@
3
x̄ū+

✏D

1� ✏D t̄
H̄ (S 23)

that must be solved with the boundary conditions ū|x̄=0 = 0 (center fixed) and @x̄ū|x̄=±1 = 0 (free ends). The solution is

straightforward when taking the approximation H̄ ⇡ 1 in the interaction term in both equations. It yields

ū(x̄, t̄) = �
✏D

2
(x̄� x̄

3
/3) +

1X
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Am sin(kmx̄)e
�k

2
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1
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Z
t̄
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(1� ✏Dt

0
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(S 24)

where km = (2m � 1)⇡/2 (m = 1, 2, ..) and Am = ✏D

R 1
0 dx

0
(x

0
� x

03
/3) sin(kmx

0
). Using repetitively the identity

P1
m=1 Am sin(kmx̄) =

✏D
2 (x̄� x̄

3
/3), these solutions can be approximated for t̄ ⌧ 1 to

ū(x̄, t̄) = �✏D t̄ x̄+O(t̄
2
)

H̄(x̄, t̄) =
1

1� ✏D t̄
+

O(t̄
2
)

1� ✏D t̄
(S 25)

which corresponds to the flat solution given in Eqs. (S 13).

In dimensional terms, we conclude that for short times (t ⌧ tD) the film is under constant compression and flat. Shear

and pressure can be neglected under these assumptions. Therefore, in the limit of large systems (tD ! 1), buckling occurs

for a base state described by Eqs. (S 13) (Eq. (3) in the main text). A simple explanation of the flat solution is provided

by observing that displacements and elastic forces are small for short times. Hence, the first terms on the right-hand side of

Eqs. (S 22) and (S 23) can be neglected, and the dynamics is dictated by the source terms.

Linear Analysis

To study small perturbation of the equations, it is more convenient to use the strain � = @xu as a variable. We take the

derivative of the first equation and include the explicit value of u
flat

in both equations. It yields

@t�(x, t) = @x
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Introducing the constitutive relation for the pressure and shear and neglecting again terms of the order O[(@xH)
2
], we obtain

two equations for � and H. They are

@t�(x, t) = �
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2⌘
H

2
[B@

6
xH � Y @

3
x(�@xH)] +

Y

⌘
H@

2
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H

3
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Equations (S 27) are valid for time scales smaller than ✏̇
�1

, so that ✏̇
�1

must be our largest time scale. It implies that

the di↵usion time must be shorter than ✏̇
�1

, or ✏D = ✏̇tD ⌧ 1. Thus, the strain ✏D at the time scale tD must be small. All

our finite element simulations satisfy this condition. Because we are interested in the instability of the solution (u
flat

, H
flat

)

that approximates infinite film conditions, the present analysis is valid for times shorter than the di↵usion time (t ⌧ tD) or,

equivalently, ✏⌧ ✏D.

For times smaller than the di↵usion time t ⌧ tD, we expect the e↵ect of the boundaries to be negligible and the flat

solution in Eqs. (S 13) to be dominant. To study the stability of this solution, we perform a perturbation analysis of Eqs. (S

27) in the form

� = �
flat

+ !(t) cos(kx)

H = H
flat

+H0⇠(t) cos(kx) (S 28)

where �
flat

= @xu
flat

= �✏̇t. Equations (S 28) correspond to the perturbation defined in Eqs. (9) in the main text. The

equations for ! and ⇠ are

d!

dt
=

1

2⌘
�
2
H

2
0k

2
(Bk

4
� Y k

2
✏̇t)⇠ �

Y

⌘
�H0k

2
! (S 29)

d⇠

dt
= �

1

3⌘
�
3
H

2
0k

2
(Bk

4
� Y k

2
✏̇t)⇠ +

Y

2⌘
�
2
H0k

2
! + �✏̇⇠ (S 30)

where �(t) = 1/(1� ✏̇t). Because the equations are valid for t ⌧ ✏̇
�1

, we assume � ⇡ 1 in the following. These equations have

the characteristic time scale t↵ = ⌘H0/Y and length scale H0. We make the time and wavenumber dimensionless by defining

t⇤ = t/t↵ and k⇤ = kH0, and we introduce the dimensionless numbers N
2
= H

2
0Y/B and ↵ = ✏̇t↵ to transform the equations

into

d!

dt⇤
=

1

2
k⇤

2
(N

�2
k⇤

4
� k⇤

2
↵t⇤)⇠ � k⇤

2
!

d⇠

dt⇤
= �

1

3
k⇤

2
(N

�2
k⇤

4
� k⇤

2
↵t⇤)⇠ +

1

2
k⇤

2
! + ↵⇠ (S 31)

The parameter N =

q
H

2
0Y/B =

p
12(H0/h) is the Von Kármán number for this system. Most of our simulations are conducted

at H0/h = 9.84, for which N ⇡ 34. The dimensionless parameter ↵ = ✏̇t↵ corresponds to the strain at the characteristic time

t↵. The relation between the experimental parameters, � and H0/h, and the theoretical parameters, N
2
and ↵, are

↵ = �(H0/h) (S 32)

N =

p
12(H0/h) (S 33)

Equations (S 31) can be formally written as

!̇ = a1(t⇤)⇠ + b1! (S 34)

⇠̇ = a2(t⇤)⇠ + b2! (S 35)

where !̇ = d!/dt⇤ to reduce notation. Taking the time derivative of the second equation gives the expression

⇠̈ = ȧ2⇠ + a2⇠̇ + b2!̇ (S 36)
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The same equations give !̇ = a1⇠ + b1(⇠̇ � a2⇠)/b2, so that we obtain the equation for ⇠

⇠̈ + 2µ⇠̇ � q
2
⇠ = 0 (S 37)

where

µ = �(a2 + b1)/2 (S 38)

q
2
= ȧ2 + b2a1 � b1a2 (S 39)

WKB approximation

The transformation ⇠ = e
�

R t⇤
0 dt

0
µ
 gives the equation  ̈ � Q

2
 = 0 where Q =

p
q2 + µ̇+ µ2. For the condition

dQ/dt⇤ ⌧ Q
2
, we can use the WKB approximation to solve this equation. In terms of the original amplitude the solution is

⇠ = c1
e
S+(t⇤,k⇤)

Q1/2
+ c2

e
S�(t⇤,k⇤)

Q1/2
(S 40)

where S±(t⇤, k⇤) =
R
t⇤
0 dt

0
[�µ±Q].

To make further progress, we constrain the analysis to the condition of large Von Kármán number (N
2
� 1) and small

strain rate ↵ ⌧ 1 which are also the assumptions in all our numerical work. Under these conditions, we observe that

Q
2
= q

2
+ µ̇+ µ

2
⇡ µ

2
so that Q

2
is positive. To prove that, we study the ratio

r =
q
2
+ µ̇

µ2
=

3N
2
k⇤2[�k⇤6 + ↵N

2
(12 + k⇤2(2 + k⇤2t⇤)]

[3N2k⇤2 + k⇤6 � ↵N2(3 + k⇤4t⇤)]2
(S 41)

Assuming that the instability occurs at a time t⇤ ⇠ 1 with a wavenumber of order k⇤ ⇠ 1, and that the product of ↵ and

N
2
is of order ↵N

2
⇠ 1, we estimate r ⇠ 1/N

2
. Furthermore, under the same assumptions, we can demonstrate that µ � 1.

We conclude that S�(t⇤, k⇤) < 0, and, therefore, the instability is explained by the growth exponent S+(t⇤, k⇤), which could

be positive or negative. The condition r ⌧ 1 leads to the following approximation for the growth function:

S+(t⇤, k⇤) =

Z
t⇤

0
dt

0
[�µ+

p
q2 + µ̇+ µ2] ⇡

Z
t⇤

0
dt

0 q
2
+ µ̇

2µ
(S 42)

The explicit result is

S+(t⇤, ⇣) = �
⇣t⇤

4
+

✓
1

2
+

6

⇣
+

3

4↵
+

3↵

⇣2

◆
ln


3⇣ + ⇣

3
/N

2

3⇣ + ⇣3/N2 � ⇣2↵t⇤

�
(S 43)

where we use ⇣ = k⇤2 to simplify the expression.

Asymptotic Analysis

To understand Eq. (S 43), we start the analysis for short timescales by taking the limit t⇤ ! 0. It yields

S+/t⇤ ⇡
�⇣

4
+ 2N

2
↵⇣(12 + ⇣) + 12N

2
↵
2

4⇣(3N2 + ⇣2)
(S 44)

In our numerical simulations we are interested in the limit of large Von Kármán number and small values of ↵; hence, we take

the limits N
2
! 1 and ↵ ! 0. Assuming that the maximum is reached for a ⇣m such that ⇣m ⇠ 1 and neglecting terms of

order O(↵
2
), we obtain the approximate growth function

S+/t⇤ ⇡
�⇣

4
+ 2N

2
↵⇣(12 + ⇣)

12zN2
=

�⇣
3

12N2
+ 2↵+

↵⇣

6

⇡ 2↵+
�⇣

3

12N2
+
↵⇣

6
(S 45)
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Fig. S 2. Growth S+ as a function of k
2
⇤ for ✏ = 0.002. The other parameters are N

2
= 900 and ↵ = 1.67⇥ 10

�8
(equivalent

to H0/h = 10, ⌫ = 0.5, and � = 1.25 ⇥ 10
�9

). The thick gray line corresponds to the exact value of S+ given in Eq. (S 42)

and the red line is the approximation obtained in Eq. (S 49). The blue dot marks the wavenumber at the maximum which is

predicted by Eq. (S 50).

The growth function has a maximum which is

d(S+/t⇤)

d⇣
= 0 �!

�⇣
2
m

4N2
+
↵

6
= 0 �! ⇣m =

1

6

p

24↵N2 (S 46)

A linear expansion in time of the growth exponent is not su�cient to capture the time behavior of the maximum ⇣m(t⇤).

Because of the logarithmic dependence with time of the growth exponent, we expect that a second order expansion in t⇤ should

be su�cient to capture the time behavior. It yields

S+/t⇤ ⇡
�⇣

4
+ 2N

2
↵⇣(12 + ⇣) + 12N

2
↵
2

4⇣(3N2 + ⇣2)
+
↵t⇤N4

(3⇣
2
+ 2⇣(12 + ⇣)↵+ 12↵

2
)

8(3N2 + ⇣2)2

To avoid dangerous terms of the form ↵N
2
, we do a systematic expansion with respect to the ↵ variable using the scaled

parameters ⇣̃ = ⇣/

p

↵N2 and Ñ
2
= ↵N

2
so that they can be assumed to be of order O(1). It gives

S+/(↵t⇤) ⇡ 2�
1

12
⇣̃
3
p

Ñ2 +
1

6
⇣̃

p
Ñ2 +

1

24
Ñ

2
⇣̃
2
t⇤ +O(↵, t

2
⇤) (S 47)

In terms of the original variables and the strain ✏ = ↵t⇤, this is

S+/✏ ⇡ 2�
1

12

⇣
3

↵N2
+

1

6
⇣ +

1

24

✏⇣
2

↵
(S 48)

We can verify that this relation fits the growth exponent for both short and long times. Figure S2 compares this approximation

for the growth function with the exact expression given in Eq. (S 42), showing an excellent agreement. Maximization of this

relation gives

d(S+/✏)

d⇣
= 0 �!

�⇣
2
m

4↵N2
+

1

6
+

1

12

✏⇣m

↵
= 0 �! ⇣m =

1

6

p

↵N2


(N

2
/↵)

1/2
✏+

q
24 +N2✏2/↵

�

In summary, the growth exponent and wavenumber at the maximum are

S+(✏, k)/✏ ⇡ 2�
1

12

(kH0)
6

↵N2
+

1

6
(kH0)

2
+

1

24

✏(kH0)
4

↵
(S 49)

(kmH0)
2
=

1

6

h
N

2
✏+

p
24N2↵+N4✏2

i
(S 50)

in terms of the original variables. For a large ratio ' = N✏/
p
↵ between the two terms in the square root of Eq. (S 50), we

obtain Eq. (12) in the main text.
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“Instantaneous” compression

Here we adapt the analysis of Huang et al. [S1, S2] for an instantaneous compression applied by thermal expansion or

swelling. Under plain-strain conditions, the force displacement relation is reduced to

Fx = Y (@xu� ✏0) (S 51)

The film is initially compressed by a force Fx = �Y ✏0 and relaxation takes place until the strain reaches the value @xu = ✏0.

However, the film can buckle before relaxation is complete. Assuming the same configuration defined in Fig. S1 with v = 0,

we obtain the equations

@tu(x, t) = �
1

2⌘
@xpH

2
+

1

⌘
⌧H

@tH(x, t) = @x


1

3⌘
@xpH

3
�

1

2⌘
⌧H

2
�

(S 52)

Equations (S 15) and (S 18) give the shear and pressure in terms of the force in the section Fx; however, the constitutive

relation (S 51) must be used for this case. Neglecting nonlinear terms involving derivatives in the height ((@xH)
2
, @xH@

2
xH,

etc.), the equations become

@tu(x, t) = �
1

2⌘
H

2
[B@

5
xH � Y @

2
x((@xu� ✏0)@xH)] +

Y

⌘
H@

2
xu

@tH(x, t) =
1

3⌘
H

3
[B@

6
xH � Y @

3
x((@xu� ✏0)@xH)]�

Y

2⌘
H

2
@
3
xu (S 53)

The same analysis applied to the previous problem before buckling reveals that, for small values of ⇤ = H0/L, these

equations in dimensionless variables become

@t̄ū(x̄, t̄) = H̄@
2
x̄ū+O(⇤

2
,⇤

4
/N

2
) (S 54)

@t̄H̄(x̄, t̄) = �
1

2
H̄

2
@
3
x̄ū+O(⇤

2
,⇤

4
/N

2
) (S 55)

The boundary conditions to solve these equations are ū|x̄=0 = 0 (center fixed) and @x̄ū|x̄=±1 = ✏0 (free ends). The solution

for the horizontal displacement when taking the approximation H̄ ⇡ 1 in the interaction term in both equations is

ū(x̄, t̄) = �✏0x̄+

1X

m=1

Am sin(kmx̄)e
�k

2
m t̄

(S 56)

where km = (2m�1)⇡/2 (m = 1, 2, ..) and Am = 2✏0
R 1
0 dx

0
x
0
sin(kmx

0
). Using repetitively the identity

P1
m=1 Am sin(kmx̄) =

✏0x̄, these solutions can be approximated for t̄ ⌧ 1 to

ū(x̄, t̄) = 0 +O(t̄
2
)

H̄(x̄, t̄) = 1 +O(t̄
2
) (S 57)

Thus, the film is initially undeformed but compressed with the constant cross section force Fx = �Y ✏0. Boundary layers

propagate to the center of the film in such a way that Fx = 0 and @xu = ✏0 for t � tD.

Repeating the analysis for the case of the moving wall in terms of the strain � = @xu, we transform Eqs. (S 53) into

@t�(x, t) = �
1

2⌘
H

2
[B@

6
xH � Y @

3
x((� � ✏0)@xH)] +

Y

⌘
H@

2
x�

@tH(x, t) =
1

3⌘
H

3
[B@

6
xH � Y @

3
x((� � ✏0)@xH)]�

Y

2⌘
H

2
@
2
x� (S 58)

To study the stability of this solution for short times when the base state is � = 0 and H = H0, we do a perturbation analysis

of Eqs. (S 58) of the form

� = !(t) cos(kx)

H = H0 +H0⇠(t) cos(kx) (S 59)
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The equations for ! and ⇠ are

d!

dt
=

1

2⌘
�
2
H

2
0k

2
(Bk

4
� Y k

2
✏0)⇠ �

Y

⌘
�H0k

2
! (S 60)

d⇠

dt
= �

1

3⌘
�
3
H

2
0k

2
(Bk

4
� Y k

2
✏0)⇠ +

Y

2⌘
�
2
H0k

2
! (S 61)

where � = 1/(1 � ✏). Because the equations are valid for small strain, we assume � ⇡ 1 in the following. Defining the

dimensionless time scale t⇤ = Y t/(⌘H0), wavenumber k⇤ = kH0, and number N
2
= H

2
0Y/B, we obtain

d!

dt⇤
=

1

2
k⇤

2
(N

�2
k⇤

4
� k⇤

2
✏0)⇠ � k⇤

2
!

d⇠

dt⇤
= �

1

3
k⇤

2
(N

�2
k⇤

4
� k⇤

2
✏0)⇠ +

1

2
k⇤

2
! (S 62)

An equivalent set of equations was obtained by Huang and Suo [S1, S2] but under biaxial compression. These equations can

be transformed into a second order equation with constant coe�cients

⇠̈ + 2µ⇠̇ � q
2
⇠ = 0 (S 63)

that has the solution

⇠ = c1e
S+(t⇤,k⇤) + c2e

S�(t⇤,k⇤) (S 64)

where S±(t⇤, k⇤) = (�µ±

p
q2 + µ2)t⇤. The instability is explained by the growth exponent S+(t⇤, k⇤) that could be positive

or negative. Moreover, we can approximate S+(t⇤, k⇤) as

S+(t⇤, k⇤) = (�µ+

p
q2 + µ2)t⇤ ⇡

q
2

2µ
t⇤ (S 65)

The explicit result is

S+(t⇤, ⇣) =
(✏0 � ⇣/N

2
)⇣

2

4(3� ⇣✏0) + ⇣2/N2
t⇤ (S 66)

where ⇣ = k
2
⇤. Taking the scaled parameter N̄

2
= ✏0N

2
and scaled variable ⇣̄ = ⇣/(✏0N

2
), we obtain for small strain

S+(t⇤, ⇣̄) = ⇣̄
2 1� ⇣̄

12N̄2
✏0t⇤ +O(✏

2
0) (S 67)

In terms of the original variables

S+(t⇤, ⇣) =
1

12
(✏0 � ⇣/N

2
)⇣

2
t⇤ �! S+(t⇤, ⇣) =

1

12
(✏0 � (kH0)

2
/N

2
)(kH0)

4
t⇤ (S 68)

which is Eq. (19) in the main text.

Compression of a filament

Chopin et al. [S4] validated a model predicting the deformation of a filament immersed in a viscous fluid undergoing

compression. The source of dissipation for this case is explained by the Stokes flow around the filament and can be computed

estimated as ~Fd = �µ~v, where µ = 4⇡⌘/ ln(�) and � is the aspect ratio of the filament. Although the e↵ective value of � is

unknown after buckling, the logarithmic dependence makes this parameter unimportant. The computation of the drag force

requires a completely 3D treatment of the fluid-structure interactions; however, we can assume the deformation is 2D in the

plane x� z. Equations (S 14) and (S 16) are for this case

d~F

ds
+ ~Fd = 0 (S 69)

d ~M

ds
+ t̂⇥ ~F = 0 (S 70)
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where for a filament ~M = EI@
2
sHx̂ ⇥ ẑ and t̂ is the tangent to the x � z curve defined by the film centerline. Here I is the

moment of inertia which is I = Wh
3
/12 for a rectangular filament of thickness h and width W . For small deflections, the

tangent is approximated by t̂ ⇡ x̂+ @sHẑ. The moment balance equation is then

EI@
3
sH + Fz � Fx@sH = 0 (S 71)

The non-slip boundary condition for a velocity written in lagrangian coordinates gives

@tu(s, t) = vx(s, t) (S 72)

@tH(s, t) = vz(s, t) (S 73)

and the force balance yields the dynamics

dFx

ds
= µ@tu (S 74)

dFz

ds
= µ@tH (S 75)

We now consider the situation where the filament experiences thermal compression of strain ✏ = ↵l�T where ↵l is the

linear expansion coe�cient and �T is the increase in temperature. The force-strain relation gives

Fx = EA(@su� ✏) (S 76)

where A is the section area of the filament. Applying @s(·) to Eq. (S 71) and using the previous relation, we obtain the equations

µ@tu = EA@
2
su (S 77)

µ@tH = �EI@
4
sH + EA@s[(@su� ✏)@sH] (S 78)

It yields the linear set of equations

µ@tu = EA@
2
su (S 79)

µ@tH = �EI@
4
sH � EA✏@

2
sH (S 80)

Note that the horizontal and vertical displacements are decoupled which represents a significant simplification from the problem

studied in the previous sections. For a linear change in temperature with time, we can write the strain as ✏ = ✏̇t. Again, we do

a perturbation analysis of the form

H = ⇠(t) cos(kx) (S 81)

which is valid for long filaments since it does not fulfill the exact boundary conditions. It gives the equation and solution

µ@t⇠ = (�EIk
4
+ EA✏̇tk

2
)⇠ �! ⇠ = ⇠0e

S(t,k)
(S 82)

where

S(t, k) =
1

µ

✓
�EIk

4
t+ EA✏̇k

2 t
2

2

◆
(S 83)

which is Eq. (23) in the main text.
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Section S2: Simulation methods 
 

Simulations were conducted under plane strain conditions using the ABAQUS explicit solver. The simulation geometry is shown 

in Fig. 2 in the main text, with a finite length along the !-direction, 2# ≫ %!. The film and the rubber substrate, of thickness ℎ and 

ℎ" respectively, were both modeled by neo-Hookean 1D beam elements with shear modulus ' and '", respectively. The modulus 

of the film referred to in the main text is ( = 2'(1 + -) where - = 0.49 to approximate incompressibility. Similarly, the Young 

modulus of the rubber layer is (" = 2'"(1 + -") where -" = -. The liquid layer was modeled as a 2D viscoelastic material with a 

modulus that decreases exponentially in time (see below and [S5]). The length of the liquid layer is much longer than the length of 

the film and coincides with the length of the rubber layer defined by 2#" (2#" > 2#). 

The free surface of the film was set to be stress-free. The ends of the film were set to have zero force and moment. The ends of the 

rubber layer were translated inwards at fixed velocity 4#$%, and out-of-plane deformation of this layer was forbidden via a roller 

boundary condition. The modulus of the rubber was set to be much larger than of the film ensuring that the in-plane strain, 5, at all 

locations in the rubber was equal to the nominal value, i.e. at all locations !,  

5 =
678	8:;<=>?6@67A

BCDD6B	=67EAℎ
= 5̇A (S 47) 

where 5̇ = 4#$%/#" is the imposed strain rate. The corresponding compression of the fluid layer then induced buckles over the mid-

section of the film. 

To model the viscous fluid layer, we use a viscoelastic material with an exponentially-decaying modulus. The time-dependent 

modulus is defined as: 

'(A) = '! exp K−
A

M&
N (S 48) 

Accordingly, the corresponding fluid part has a viscosity O 

O = P '(A)8A
'

!
= '!M& (S 49) 

It is expected that for the condition 5̇M& ≪ 1 the system is dominated by viscosity and displacements become important. To compute 

large displacements correctly, we use a hyperelastic material for the liquid layer. Specifically, a Neo-Hookean model defined by 

the parameters R( = '!/2 and S( = 3(1 − 2-!)/[(1 + -!)'!] (see Ref. [S5]). Since the elastic part is irrelevant for the large time 

behavior of the fluid, the initial modulus '! was set as equal to the film modulus, '. Although the fluid is incompressible, numerical 

instability is observed for a Poisson ratio -! = 1/2; hence, the Poisson ratio of the viscoelastic material was set to a safe value of 

-! =0.475. To summarize, Table S1 provides all the parameters used in the simulations. 

To validate the modeling of the fluid part, we tested the material by studying different flows under well-known boundary conditions 

in fluid mechanics (Couette flow, squeeze film flow, etc.) [S6]. In all our numerical experiments, we re-obtained the classical 

solutions for Stokes flow as long the characteristic time of the problem is larger than the relaxation time of the viscoelastic material 

and the Reynolds number is W6 ≪ 1.  
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Table S1: Simulation Parameters 

Property Dimensional value used 
in simulation 

Non-dimensional value mentioned 
in the main text 

Rubber layer modulus !! = 1.8 × 10"	Pa   

Rubber layer thickness (1D elements) ℎ! = 0.0254	mm   

Length of rubber 0! = 50	mm  0!/2# = 200  

Film modulus ! = 1.8 × 10$	Pa   

Film Poisson ratio 3 = 0.49   

Film thickness (1D elements) ℎ = 0.0254	mm   

Film half length  0 = 47.5	mm  0	/2# 	= 	190  

Liquid layer thickness (2D elements)  2# = 0.25	mm  2#/ℎ = 9.84  

Initial shear modulus of the liquid 6# = 0.6 × 10$	Pa   

Relaxation time of the liquid 8% = 5 × 10&'	s   

Liquid layer Poisson ratio 3# = 0.475   

Viscosity of the liquid layer : = 6#8% = 300	Pa. s   

Compression rate (fixed 2#) <̇ = 0.005	s&(  > = (1 − 3)):<̇/! = 6.3 × 10&"  
<̇8% = 2.5 × 10&$ 
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Section S3: 

Correlation functions for calculating wavelength and inter-ridge distance 
 
The amplitude and velocity autocorrelation functions are defined as  

R)(D) =
∫Δ%(;)Δ%(; + D)8;

∫[Δ%]*8;
 (S 50) 

  

R&(D) =
∫ΔĊ(;)ΔĊ(; + D)8;

∫[ΔĊ(;)]*8;
 

(S 51) 

where ; is the arclength along the film. These are shown below for the same data as Fig. 3 in the main text. As with all 
quantitative analysis of the simulations in this paper, we use the central portion of film of contour length 1200ℎ, i.e. the portion 
of the film that, at A = 0, lies between −

"+
* < ! <

"+
*  with B = 1200. 

	

	
Fig. S 3: A. Amplitude and C. velocity autocorrelation functions at the same strains as the wrinkling simulation in Fig. 3C in the 
main text. B and D are the autocorrelation functions for the ridge localization simulation in Fig. 3D in the main text. Wavelength 
is identified as the location of first peak in R). The inter-ridge distance is identified as the location of the first peak in R&. As 
explained in the main paper, for simulations such as C above, the peak in R& is not well defined and hence the inter-ridge distance 
is not reported. Such simulations are deemed to be in the uniformly-wrinkled state. 
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Critical	strain	for	wrinkling	versus	%	and	&"/'		
 
 

 
Fig. S 4: A. Critical strain versus dimensionless rate for  %!/ℎ = 9.84. B. Critical strain versus aspect ratio %!/ℎ  for \ =
6.3 × 10,-. Red line corresponds to the parameter _! ≈ 30 used to fit the data in Fig. 4 (main text). The theory is based on the 
lubrication approximation which is only valid for a ≫ %!, and hence increasing deviations are expected as %! increases. Indeed, 
the simulations for which a < %! (shown in open symbols) deviate most severely from the expected trends. 
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