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Supplementary Material
1. Derivation of equations (4) and (7a,b)

Since the equations are linear, there is no loss in generality to set ¢, =1. The results in the main text are then

obtained by multiplying c derived below by the actual value of c,.

Taking the Laplace transform of (3) with respect to ¢ and using the initial condition (2), we obtain
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where Je= I e’c (r, 0, t)dt is the Laplace transform of ¢ and p is the transform variable. The boundary conditions
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(1a,b) transform to
&r,0=0,60,,p)=1/p. (A2)
Motivated by Jaeger, we look for a solution of the form:
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where J, is the Bessel function of order v, and f, is a function to be determined. Note that the boundary

conditions (A2) are automatically satisfied. Substituting (A3) into (A1), we obtain
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The theory of Hankel transform tells us that the RHS of (A4) is
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Using (AS), (A4) is

L= (Vke){f(uz +%j o (ur)du}, 6,500 (A6)

The theory of Fourier series tells us that
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Thus,
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Equation (A7b) indicates that all the even terms of the series in (A3) vanish, so (A3) can be simplified to
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Furthermore, (A6) and (A7) imply that
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Equation (A9), together with the identity
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allows us to conclude that
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Substituting (A11) into (AS8) gives:
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Taking the inverse Laplace transform of (A12) inside the integral, we have
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Next, the property of Bessel function [1] tells us that
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where M &,/Ik+1,— 4
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}is the Kummer function. Combining (A14) and (A13) results in (4), i.e.,
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To study how ¢ behaves for small or large », we note the following asymptotic behavior of the Kummer function:
2
as Z = 4rDt goes to zero (near the tip of wedge or long times)
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Substituting (A16) into (A15), we obtain the leading order behavior
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Consider the special cases 6, =7 /2 and 6, =37 /2. The near tip solutions are, respectively,
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2. Derivation of equation (11)
The differential equation is:

DV?*c=0c/ ot (A19)
The boundary conditions are:

c(x=%L,y<0,t>0)=c,, c(|x|<L,y=0,>0)=c,, (A20a,b)
with initial condition

c(x,|y|<L,t=0)=0. (A21)




We first subtract the solution of an infinite strip occupying y € (-, oo) whose boundary at x =*L is subjected

to the same boundary condition (A20a) and initial condition (A21), we denote this solution by ¢, (x, t). It can be

easily verified that this solution is

Ty (dn+l
(x t)/cO =1- Za e cos Y3 X |. (A22a)
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where a, are the Fourier coefficients of the cos( T yj series, they are determined by the initial condition
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Define
po G 0t) (A23)
o

then ¢ satisfies the following BCs and IC
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p(x==xL,y<0,t>0)=0, (A24b)
#(x|<L,y<0,6=0)=0. (A24c¢)

Let us look for a solution of the form

¢= an (y,1)cos(4,x), 4, = 2’;;1 I (A25)
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Substituting (A25) into (A19), we obtain
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Taking the Laplace transform of (A26) and using f, (x,t = 0): 0 which satisfies the IC (A24c), (A26) is
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where f;’c is the Laplace transform of f, and we have used the fact that f, (y,7) is bounded as y — —0, hence

one of the linearly independent solution drops out. At y=0, using (A24a)
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L(r=0,>0)=a,e™” = Ry=0,p)=4,(p)= - (A28)

Thus,
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Inverting j%lﬂ gives

1, (v.1)= ae”’erfc( il j (A30)

Combining (A30) and (A25), we have
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The exact solution is, according to (A25),

c=cp+c, (xt)=c, {erfc (%) nwo a,e™"" cos (2,x)+1- ;zo a,e P4 cos (inx)} : (A32)

Therefore,

clcy=1- [1 erfc( i ﬂZae " cos(A,x)=1- erf[ P ]Zae cos (A,x), (A33)
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