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1 Pre-stressed thick plate model

To compare the experimental frequency behaviour (Figure 2 of the main
manuscript) to predictions of thick plate model, we use equations of motion
governing axisymmetric transverse linear vibrations of a pre-stressed thick
circular plate from [1]. The solutions of those equations are used to identify
the in-plane stress and young’s modulus of the gel disk as a function of water
loss. The dimensional form of the equations of motion are
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where ( ˙ ) refers to time derivative, r is the radial coordinate, G is the
shear modulus, hf is the thickness of the plate at a given water loss state
and κ is the shear correction factor. w(r, t) is with respect to the center
of the mid-plane of the undeformed plate. Flexural rigidity of the plate is
defined as D = Eh3f/ [12 (1− ν2)], where E is the Young’s modulus and
ν is the Poisson’s ratio of the gelatine sample. In-plane inertial forces are
expected to be small during the transverse vibrations and only involve in-
plane motion. Therefore, the equations of motion governing the axisymmetric
transverse displacement w(r, t) and rotation ψ(r, t) of the cross section suffice
for our study. With uniformly distributed initial stress σ0 along the radial
and circumferential directions, N0 = σ0hf and M0 = σ0h

3
f/12.

At a given water loss state, E, ρ and the radius of the plate R are constant
and thus can provide relevant length and time scales for the dependent and
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independent variables in Equation S.1 and S.2. Defining those scales as ξ = r
R

and τ = ω0t with ω0 =
1
R

√
E
ρ
, one can convert the equations of motion into

a non-dimensional form
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where the W (ξ, τ) are the transverse vibrations normalized to the radius of
the disk and ( ′ ) refers to derivative with respect to normalized time τ . Note
that isotropic linear elastic response with G = E/ [2(1 + ν)] is assumed in
simplifications leading to Equations S.3 and S.4 with two key parameters
α = R

hf
and β = σ0

E
.

As mentioned in the main manuscript, the increase of in-plane stresses would
change the plate to membrane where tension dominates the bending rigidity.
This is reflected in Equation S.3 as a large β will make terms in the second
parentheses more significant and they are similar to the governing equations
of vibrations of circular membrane. Another additional point to be noted,
the effect of any variation of Young’s modulus along the gel thickness was
found to have minimal (second order change) in the frequencies. The effect
of varying Young’s modulus along the thickness was studied using Finite
Element Analysis. The Young’s modulus was assumed to increase from the
mid plane to the top and bottom of the disk. The mathematical form (close
to quadratic) was obtained from the solution of diffusion equation based
on water loss along thickness. With the identified stress σ0 and Young’s
modulus E values at a given water loss level of a disk, changing Young’s
modulus from the uniform value E to a thickness dependent form did not
significantly change the frequency ratio and values (second order change).
Thus, we conclude that any Young’s modulus gradient along the thickness
has smaller order effect compared to in-plane stress effect. Equations S.3 and
S.4 are given as Equations 1 and 2 in the Section 2.3 of the main manuscript.
The boundary and symmetry conditions for the disk clamped at ξ = 1 are

W (1, τ) = ψ(1, τ) = 0

∂W

∂ξ
(0, τ) = ψ(0, τ) = 0

(S.5)
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The Galerkin’s method is then used to obtain the natural frequencies ω of the
transverse vibrations. First, approximate synchronous solutions of Equations
S.3 and S.4 satisfying the boundary conditions listed above are assumed

W (ξ, τ) = [AW1(ξ) +BW2(ξ) + CW3(ξ)] e
iλτ

ψ(ξ, τ) = [Hψ1(ξ) + Iψ2(ξ) + Jψ3(ξ)] e
iλτ

(S.6)
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and A, B, C, H, I and J are the weights of the spatial functions approxi-
mating the mode shapes of the transverse vibrations of a thin circular plate.
Re-defining the equations of motion as operators LW (W,ψ) and Lψ(W,ψ)
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and taking inner products with Wi and ψi (averaging over the disk radius)

⟨LW (W,ψ),Wi⟩ =
∫ 1

0

LW (W,ψ)Wiξdξ = 0

⟨Lψ(W,ψ), ψi⟩ =
∫ 1

0

Lψ(W,ψ)ψiξdξ = 0

(S.10)

yields six linear equations with the unknown weights, A, B, C, H, I and J .
These equations can be written in matrix form as

Qx = 0 (S.11)

where Q is a 6 × 6 matrix whose elements depend on α, β, λ, ν and κ, and
x = [A,B,C,H, I, J ]T . For nontrivial solutions of Equation S.11, |Q| = 0,
which can be solved for six positive λ values for a given set of α, β, ν and
κ parameters. The two smallest λ’s, λ1 and λ2, correspond to the natural
frequencies ω1 = 2πf1 and ω2 = 2πf2 of the first two axisymmetric modes.
Note that the results in the main manuscript (e.g., Fig.2) are given in terms
of f1 and f2.
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2 Theoretical and experimental mode shapes

To obtain theoretical mode shapes, the weights x in Equation S.6 should
be obtained for each mode; i.e., substitute λi into Q in Equation S.11, set
one of the weights arbitrarily to 1, say A = 1 and solve the other unknown
weights. For experimental mode shapes, we first create a geometry mesh
on the gel disks. The mesh consiste of 140 sensing locations, which can
successfully resolve the first two axisymmetric modes. The gel disks are then
vibrated harmonically at resonance frequencies and response is recorded via
scanning laser vibrometry (PSV400, Polytec Inc.). The mode shapes are
directly constructed via the Polytec software.

Figure S1: Comparison of theoretical and experimental mode shapes for the
wet case.

Figs. S1 and S2 show the comparison between the theoretical and experimen-
tal mode shapes at wet and 80 wt.% dry cases, respectively for the first two
axisymmetric modes. Mode shapes match reasonably well between theory
and experiments. Experimental mode shapes are also illustrated as insets in
Fig.2 of the article.

4



Figure S2: Comparison of theoretical and experimental mode shapes for the
80 wt.% dry case.

3 Evolution of sample thickness with dehy-

dration

To independently gauge the effect of water loss on the sample thickness, we
prepared three additional disk samples using the same protocol described in
Section 2.1 of the main manuscript. The radius (15 mm) and initial thickness
(∼ 4 mm) of the samples are similar to the ones used in the vibration testing.
The samples are then subjected to dehydration as described in the main
manuscript. At regular intervals, we monitor the weight and thickness of the
disks. We use a digital thickness gauge (BNISE) for thickness measurements.
The thickness varies slightly from the center to a thin region around the
clamped boundary, and attains the maximum value at the boundary (the
initial thickness, h0). We report the thickness at the center of the disk hf
in Figure S3. Thickness decreases linearly up to 60 wt.% water losses. The
obtained information is used in Section 3.2 of the main manuscript to study
the effect of in-plane stress and thickness reduction on the frequency ratio of
the two vibration modes of the disk.
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Figure S3: Evolution of disk thickness with water loss

4 Modulus characterization with and with-

out internal stress

Figure 3B of the main manuscript shows the Young’s modulus characteriza-
tion from the methodology developed in this paper that contains the effect
of internal stress. The mean modulus of the six samples is plotted in Figure
S4 using red markers. In addition, the modulus characterized without inter-
nal stress is plotted using blue markers. The characterized moduli diverge
as the material continues to dehydrate. The moduli characterized without
internal stress reach 2 MPa at the largest water loss. Those values are be-
yond the range of moduli reported for gelatin. The characterization with
internal stress deliver moduli close to 400 kPa, still within reasonable range
reported for high concentration gels. This comparison clearly demonstrates
the importance of internal stress formulation in mechanical characterization
of constrained gels.
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Figure S4: Young’s modulus characterization from models with and
without consideration of internal stress

5 Indentation-based modulus characterization

We have conducted calibration by displacement-controlled indentation on the
gelatin samples at wet states. In those experiments, we measured both load
P and contact radius a, and used standard JKR based theory [2] to fit the
contact modulus E∗ and work of adhesion ∆γ from the experimental data:

a3 =
3R

4E∗

(
P + 3π∆γR +

√
6π∆γRP + (3π∆γR)2

)
(S.12)

The Young’s modulus of the sample E was estimated from the contact modu-
lus using E∗ = E/(1− ν2) and Poisson’s ratio ν = 0.48. The gelatin samples
tested were cylinders with 85 mm diameter and 13 mm thickness. The thick-
ness selected for the samples is about 3 times higher than the vibration sam-
ples. The larger thickness ensured that boundary effects during indentation
were negligible. The indenter was a sphere made of glass (assumed E = 65
GPa, ν = 0.3) with a radius R = 51.68 mm (rigid indenter compared to the
sample compliance). The sample was loaded slowly at 0.1 mm/s. The aver-
age Young’s modulus obtained from 5 indentation experiments was 33 kPa,
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Figure S5: Contact radius vs load obtained from five indentations and the
JKR theory given in Equation S.12 fit to the average of the experiments.

which is close to the average modulus obtained from vibration experiments
approximately 40 kPa. See Figure S5 for the indentation fit.

About 17.5% difference in moduli could be attributed to the slow indentation
rates compared to the modal frequencies (40 Hz for the smallest modal fre-
quency that we measured). During the indentation tests, we were measuring
the relaxed modulus. In gels, relaxations could be due to reconfiguration
of solid network (viscoelasticity) and diffusion driven by pressure gradients
(poroelasticity). At macroscopic length scales applicable to both vibration
and indentation tests, poroleastic relaxations could be neglected and thus
most of the reduction in moduli can be primarily attributed to viscoelastic
relaxations. In addition, indentation tests are sensitive to local variations in
water-solid content in the samples, but vibration-based moduli are averaged
through the whole volume active in both modes of vibration. Near-surface
indents are known to produce slightly lower moduli than the bulk in gels;
due to functionally-gradient microstructure (e.g., polyacrylamide tested via
local methods as AFM [3] and indentation [4] versus macroscopic uniaxial
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compression [5]). So, some portion of the deviations can be attributed to
those local effects in indentation tests.
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