Supplementary Information for:

Flattened chains dominate the adsorption dynamics of loosely adsorbed chains on modified planar substrates

Jianquan Xu,[#] Lu Bai,[#] Weizhao Ren, Huifeng Zhu, Xianjing Zhou, Cuiyun Zhang, Xinping Wang*

School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China.

Corresponding authors

*E-mail: <u>wxinping@zstu.edu.cn (X.W.)</u>

Author Contributions

[#]J.X. and L.B. contributed equally to this work.

1. Experimental detail

1.1 The calculation of phenyl content by the Cassie equation

The surface fraction of phenyl groups on the substrate was estimated by the Cassie equation¹, as described in our previous work²:

$$\cos\theta = f_{-OH} \cos\theta_{-OH} + f_{-phenyl} \cos\theta_{-phenyl} \quad (f_{-OH} + f_{-phenyl} = 1)$$
Eq. S1

where θ , θ_{-OH} , and $\theta_{-phenyl}$ are water contact angles on the PTS modified substrate, the silicon surface covered with -OH groups (i.e., 7°), and the substrate fully covered with phenyl groups (i.e., 91°), respectively, and f_{-OH} and $f_{-phenyl}$ are areal fractions for hydroxyl and phenyl groups on the PTS- modified substrate, respectively.

No.	C _{PTS} (vol%)	Reacting time (min)	Reacting temperature (K)	Water Contact angle (º)	Phenyl Content (%)
PTS-1	0.25	15		38 ± 1	20
PTS-2	0.25	30	333	60 ± 1	49
PTS-3	0.25	45	000	72 ± 1	69
PTS-4	0.25	60		76 ± 1	75

Table S1. Details for modify reaction and obtained phenyl contents.

1.2 XPS and SFG characterization of PTS-modified substrates.

Fig. S1. (a) XPS of PTS-modified substrates and (b) High-resolution XPS spectrum in the C1s region for PTS-modified substrates with varying phenyl group contents. The graph in the inset shows the amplified region around π - π * vibrational peak. (c) SFG spectra of PTS-modified substrates surfaces with different phenyl contents.

2. To obtain and characterize adsorbed layer on the substrate

2.1 Solvent rinsing experiment

Fig. S2. The residual thickness of the PS (M_w =225 kDa) films on the neat SiO₂-Si substrate (annealing at 423 K for 48 h) and PTS-4 modified substrate (annealing at 423 K for 200 h) rinsed by (a) toluene and (b) CHCl₃ as a function of rinsing time.

2.2 XR test for the adsorbed layer on SiO_2 -Si substrate obtained by different solvent elution.

Fig. S3. (a) XR curves of the entire adsorbed layer and flattened layer on SiO₂-Si substrate obtained by annealing the PS (M_w =225 kDa) film at 423 K for 48 h and then leaching to equilibrium using toluene and CHCl₃, respectively. (b) The dispersion (δ) profiles correspond to the best-fits to the data against the distance (z) from the SiO₂ surface.

Leaching	Fitting	Low-density PS layer			High-density PS layer			SiO ₂			Si Substrate	2
solvent	model	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Roughness (nm)	X²
Toluene	1 lovor	6.3	0.43	1.14	1.9	0.36	1.31	1.9	0.34	7.12	0.25	0.007
CHCl ₃	4-layer	/	/	/	2.1	0.78	1.29	2.0	0.42	7.12	0.33	0.005

Table S2. The fitting parameters of XR profiles for Fig. S3.

2.3. Fitting parameters of the XR data in Fig. 2

Table S3. The fitting results of a three-layer model of XR profiles for Fig. 2.

No.	Fitting model	PS	adsorbed laye	er		SiO ₂	Si Substrate	2	
		Thickness (nm)	Roughness (nm)	δ×10 ⁶	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Roughness (nm)	χ-
PTS-0	3-layer	8.5	0.25	1.21	1.9	0.24	7.12	0.46	0.037
PTS-2		5.2	0.76	1.61	2.0	0.31	7.12	0.52	0.042
PTS-4		4.6	0.98	1.69	2.1	0.43	7.12	0.43	0.007

Table S4. The fitting results of a four-layer model of XR profiles for Fig. 2.

No.	Fitting model	Low-density PS layer			High-density PS layer				SiO ₂	Si Substrate	··· ²	
		Thickness (nm)	Roughness (nm)	δ×10 ⁶	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Thickness (nm)	Roughness (nm)	δ×10 ⁶	Roughness (nm)	x
PTS-0		6.3	0.36	1.14	2.0	0.28	1.31	2.1	0.32	7.12	0.48	0.007
PTS-2	4-layer	2.4	0.48	1.14	2.7	0.45	1.53	2.0	0.28	7.12	0.47	0.008
PTS-4		2.4	0.66	1.66	2.3	0.87	1.68	2.0	0.45	7.12	0.36	0.037

For the fitting of XR data, we carefully checked the fitting parameters and contrastively analyzed the goodness-of-fit for models with three- or four-layer model. That is, a four-layer model of Si/SiO₂/high-density PS/low-density PS and a three-layer model of Si/SiO₂/PS adsorbed layer were both employed by using *REFLEX* software. In the fitting, the thickness, X-ray refractive index (δ) (which is proportional to mass density) and roughness of the PS layers, as well as the thickness and roughness of SiO₂ layer, were allowed to refine. While the δ of SiO₂ layer was fixed as a reported data of 7.13 × 10^{-6.3} A refinement procedure was used to minimize the differences between the model and experimental data (i.e. minimize χ^2). The results were displayed in Table S3 and Table S4. By comparing the fitting results of three-layer and four-layer model, it is clearly shown that for the PS interfacial sublayer on PTS-0 (SiO₂-Si) and PTS-2 substrates, four-layer model is preferable than three-layer

model with much smaller χ^2 (about an order of magnitude smaller), while for PTS-4 substrate, three-layer model was better. However, the fitting results of four-layer model show that the δ of both high-density PS layer and low-density PS layer on PTS-4 substrate were very close, which means four-layer model is equals to three-layer model at this situation. Consequently, a four-layer model was chosen for PTS-0 and PTS-2 substrates, while a three-layer model was chosen for PTS-4 substrate (marked by light yellow).

2.4 Adsorption kinetics of PS on various PTS-modified substrates.

Fig. S4. Variation in h_{ads} of PS ($M_w = 225$ kDa) with annealing time in a linear scale at 423 K on PTS-0, PTS-1, and PTS-4.

Fig. S5. The thickness of the whole adsorbed layer on PTS-1 and PTS-2 substrates against annealing time in a logarithmic scale at 423 K for PS with various molecular weights.

Fig. S6. The thickness of the whole adsorbed layer on PTS-4 (75 % phenyl content) substrates against annealing time in a logarithmic scale at 423 K for PS with various molecular weights. It was confirmed that at sufficiently annealing time for PTS-4, $h_{ads}=h_{flat}$.

3. The surface coverage of the flattened chains by AFM

In order to estimate the surface coverage of the PS (Mw=225 kDa) flattened chains, we applied bearing area analysis using NanoScope Analysis software (version 1.40, Bruker).⁴ A bearing area gives a percentage of the surface above a critical threshold. For this analysis, AFM height images were used and we set the critical threshold (i.e., the polymer/PTS-modified substrate interface) to 0 nm.

Fig. S7. The representative bearing analysis results of the AFM image for Fig. 5.

References

 Y. Zhang, H. Fan, Y. Wang, B. Zuo, W. Zhang, S. Wang and X. Wang, *Soft Matter*, 2015, **11**, 9168-9178.

2. F. Zheng, B. Zuo, Y. Zhu, J. Yang and X. Wang, Soft Matter, 2013, 9, 11680-11689.

3. G. Vignauda and A. Gibaudb, J. Appl. Cryst., 2019, 52, 201–213.

4. N. Jiang, J. Shang, X. Di, M. K. Endoh and T. Koga, *Macromolecules*, 2014, 47, 2682-2689.