Soft Confinement of Self-Propelled Rods: Simulation and Theory

Supplementary Material

Kevin J. Modica ${ }^{a}$ and Sho C. Takatori* ${ }^{* a}$
${ }^{a}$ Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106 USA.
*Correspondence: Sho C. Takatori; stakatori@ucsb.edu

1 Potential Energy of a Discrete Rod in an External Field

In this section, we derive the effective potential energy a rod center of mass experiences at a given position and orientation. This derivation applies to rods made of a discrete number of point masses separated by distance σ. In the thin rod limit, we show that the energy for a discrete rod matches the continuous solution described in the main text.

For a rod made of N_{s} monomers spaced at distance σ, the potential acting on each monomer can be described by a Fourier series.

$$
\begin{equation*}
\phi\left(\mathbf{r}_{i}\right)=\frac{1}{N_{s}} \sum_{n, m} \hat{\phi}_{n m} e^{i 2 \pi \mathbf{k}_{n m} \cdot \mathbf{r}_{i}} \tag{1}
\end{equation*}
$$

The position of each monomer on the rod can be described by:

$$
\begin{equation*}
\mathbf{r}_{i}=\mathbf{r}+s_{i} \sigma \mathbf{u} \tag{2}
\end{equation*}
$$

where $\mathbf{u}=\{\cos (\theta), \sin (\theta)\}^{T}$ is the orientation vector describing the direction to step away from the rod center of mass \mathbf{r}. s_{i} is an integer counting the number of monomer units away from the center of mass. For example, provided there are an odd number of monomers:

$$
s=-\frac{N_{s}-1}{2}, \ldots,-3,-2,-1,0,1,2,3, \ldots, \frac{N_{s}-1}{2}
$$

The potential energy of the entire rod is then:

$$
\begin{equation*}
V_{\text {Rod }}(\mathbf{r}, \theta)=\sum_{i}^{N_{s}} \frac{1}{N_{s}} \sum_{n, m} \hat{\phi}_{n m} e^{i 2 \pi \mathbf{k}_{n m} \cdot\left(\mathbf{r}+s_{i} \sigma \mathbf{u}\right)} \tag{3}
\end{equation*}
$$

Except for $s_{i}=0$ there are $\left(N_{s}-1\right) / 2$ pairs of beads on opposite sides of the center of mass: $s_{i}= \pm 1, \pm 2, \ldots, \pm\left(N_{s}-1\right) / 2$. Using the angle sum/difference formula we can describe the pairs as

$$
\begin{equation*}
e^{i 2 \pi \mathbf{k}_{n m} \cdot\left(\mathbf{r}+s_{i} \sigma \mathbf{u}\right)}+e^{i 2 \pi \mathbf{k}_{n m} \cdot\left(\mathbf{r}-s_{i} \sigma \mathbf{u}\right)}=2 e^{i 2 \pi \mathbf{k}_{n m} \cdot \mathbf{r}} \cos \left(2 \pi \mathbf{k}_{n m} \cdot s_{i} \sigma \mathbf{u}\right) . \tag{4}
\end{equation*}
$$

Simplifying the sum provides the following expression:

$$
\begin{equation*}
V_{R o d}(\mathbf{r}, \theta)=\frac{1}{N_{s}} \sum_{n, m} \hat{\phi}_{n m} e^{i 2 \pi \mathbf{k}_{n m} \cdot \mathbf{r}}\left[1+2 \sum_{s_{i}=1}^{s_{i}=\left(N_{s}-1\right) / 2} \cos \left(2 \pi \mathbf{k}_{n m} \cdot s_{i} \sigma \mathbf{u}\right)\right] \tag{5}
\end{equation*}
$$

The inner series can be solved exactly via telescopic sums:

$$
\begin{equation*}
S_{M}=2 \sum_{s_{i}=1}^{s_{i}=\left(N_{s}-1\right) / 2} \cos \left(2 \pi \mathbf{k}_{n m} \cdot s_{i} \sigma \mathbf{u}\right) \tag{6a}
\end{equation*}
$$

$$
\begin{equation*}
S_{M}=\csc \left(\pi \mathbf{k}_{n m} \cdot \sigma \mathbf{u}\right) \sin \left(N_{s} \pi \mathbf{k}_{n m} \cdot \sigma \mathbf{u}\right)-1 \tag{6b}
\end{equation*}
$$

Plugging this into the Eq. 5 gives the potential energy of a rod made of N_{s} monomers separated by distance σ in an external field.

$$
\begin{equation*}
V_{R o d}(\mathbf{r}, \theta)=\frac{1}{N_{s}} \sum_{n, m} \hat{\phi}_{n m} e^{i 2 \pi \mathbf{k}_{n m} \cdot \mathbf{r}} \csc \left(\pi \sigma \mathbf{k}_{n m} \cdot \mathbf{u}\right) \sin \left(\pi N_{s} \sigma \mathbf{k}_{n m} \cdot \mathbf{u}\right) \tag{7}
\end{equation*}
$$

The discrete solution matches the continuous solution when $N_{s}=\sigma^{-1} L_{R o d}$, and $\sigma \rightarrow 0^{+}$

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0^{+}} \frac{\sigma}{L_{R o d}} \csc \left(\pi \sigma \mathbf{k}_{n m} \cdot \mathbf{u}\right) \sin \left(\pi L_{R o d} \mathbf{k}_{n m} \cdot \mathbf{u}\right)=\operatorname{sinc}\left(\pi L_{R o d} \mathbf{k}_{n m} \cdot \mathbf{u}\right) \tag{8}
\end{equation*}
$$

The convergence of the limit can be found by the Taylor series expansion around $\sigma \rightarrow 0^{+}$

$$
\begin{equation*}
\lim _{\sigma \rightarrow 0^{+}} \frac{\sigma}{L_{R o d}} \csc \left(\pi \sigma \mathbf{k}_{n m} \cdot \mathbf{u}\right) \sin \left(\pi L_{R o d} \mathbf{k}_{n m} \cdot \mathbf{u}\right)=\operatorname{sinc}\left(\pi L_{R o d} \mathbf{k}_{n m} \cdot \mathbf{u}\right) *\left(1+\frac{\left(\sigma \pi \mathbf{k}_{n m} \cdot \mathbf{u}\right)^{2}}{6}++\frac{7\left(\sigma \pi \mathbf{k}_{n m} \cdot \mathbf{u}\right)^{4}}{360}+\mathscr{O}\left(\sigma^{6}\right)\right) \tag{9}
\end{equation*}
$$

2 Taylor Dispersion Theory for Active Rods

The general Smoluchowski equation for a thin active rod moving at a constant swim velocity U_{0} under an external potential field $V(\mathbf{x}, \mathbf{r}, \theta, t)$ is given as:

$$
\begin{gather*}
\frac{\partial P(\mathbf{x}, \mathbf{r}, \theta, t)}{\partial t}+\left(\nabla_{x}+\nabla_{r}\right) \cdot \mathbf{J}_{\mathbf{T}}++\frac{\partial}{\partial \theta} J_{\theta}=0 \tag{10a}\\
\mathbf{J}_{\mathbf{T}}=\left[U_{0} \mathbf{u} P-\mathbf{D}(\mathbf{u}) \cdot\left(\left(\nabla_{x}+\nabla_{r}\right) P+P\left(\nabla_{x}+\nabla_{r}\right)\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right] \tag{10b}\\
J_{\theta}=-D_{\theta}\left(\frac{\partial}{\partial \theta} P+P \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{10c}
\end{gather*}
$$

Where \mathbf{x} is the lattice vector denoting global position, \mathbf{r} is the local vector denoting position inside a periodic cell, θ is the rod orientation angle, $\mathbf{u}=[\cos (\theta), \sin (\theta)]^{T}$ is the orientation unit vector, and t is time. $k_{\mathrm{B}} T$ is the thermal energy and $\mathbf{D}(\mathbf{u})$ is the orientationally dependent diffusivity tensor. Assuming the potential is constant between lattices. $\nabla_{x}\left[\frac{V}{k_{\mathrm{B}} T}\right]=\mathbf{0}$. We simplify the equation and then take the Fourier transform over the lattice vector $\mathbf{x} \rightarrow \mathbf{k}$.

$$
\begin{gather*}
\frac{\partial \hat{P}(\mathbf{k}, \mathbf{r}, \theta, t)}{\partial t}+\left(i \mathbf{k}+\nabla_{r}\right) \cdot \hat{\mathbf{J}}_{T}+\frac{\partial}{\partial \theta} \hat{J}_{\theta}=0 \tag{11a}\\
\hat{\mathbf{J}}_{T}(\mathbf{k}, \mathbf{r}, \theta, t)=\left[U_{0} \mathbf{u} \hat{P}-\mathbf{D}(\mathbf{u}) \cdot\left(\left(i \mathbf{k}+\nabla_{r}\right) \hat{P}+\hat{P} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right] \tag{11b}\\
\hat{J}_{\theta}(\mathbf{k}, \mathbf{r}, \theta, t)=-D_{\theta}\left(\frac{\partial}{\partial \theta} \hat{P}+\hat{P} \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{11c}
\end{gather*}
$$

Define the macroscopic number density $\hat{n}(\mathbf{k}, t)=\langle\hat{P}\rangle_{\theta, r}$, and then take the orientational and local position average of Eq. $11 .\langle f\rangle_{q}$ is the integral of f over coordinate q.

$$
\begin{equation*}
\frac{\partial \hat{n}}{\partial t}+i \mathbf{k} \cdot\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}+\left\langle\nabla_{r} \cdot \hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}+\left\langle\frac{\partial}{\partial \theta} \hat{J}_{\theta}\right\rangle_{\theta, r}=0 \tag{12}
\end{equation*}
$$

From the divergence theorem, we know that $\left\langle\nabla_{r} \cdot \hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=0$ and $\left\langle\frac{\partial}{\partial \theta} \hat{J}_{\theta}\right\rangle_{\theta, r}=0$.

2.0.1 General Fourier Transformed Macroscopic Number Density Equation

$$
\begin{gather*}
\frac{\partial \hat{n}(\mathbf{k}, t)}{\partial t}+i \mathbf{k} \cdot\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=0 \tag{13a}\\
\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=\left[U_{0}\langle\mathbf{u} \hat{P}\rangle_{\theta, r}-\left\langle\mathbf{D}(\mathbf{u}) \cdot\left(\left(i \mathbf{k}+\nabla_{r}\right) \hat{P}+\hat{P} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right\rangle_{\theta, r}\right] \tag{13b}
\end{gather*}
$$

2.1 Assuming isotropic diffusivity

Assuming $\mathbf{D}(\mathbf{u})=D_{T} \mathbf{I}$ The Fourier Transformed Smoluchowski equation is:

$$
\begin{gather*}
\frac{\partial \hat{P}(\mathbf{k}, \mathbf{r}, \theta, t)}{\partial t}+\left(i \mathbf{k}+\nabla_{r}\right) \cdot \hat{\mathbf{J}}_{T}+\frac{\partial}{\partial \theta} \hat{J}_{\theta}=0 \tag{14a}\\
\hat{\mathbf{J}}_{T}(\mathbf{k}, \mathbf{r}, \theta, t)=\left[U_{0} \mathbf{u} \hat{P}-D_{T}\left(\left(i \mathbf{k}+\nabla_{r}\right) \hat{P}+\hat{P} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right] \tag{14b}\\
\hat{J_{\theta}}(\mathbf{k}, \mathbf{r}, \theta, t)=-D_{\theta}\left(\frac{\partial}{\partial \theta} \hat{P}+\hat{P} \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{14c}
\end{gather*}
$$

And the macroscopic density is:

$$
\begin{gather*}
\frac{\partial \hat{n}(\mathbf{k}, t)}{\partial t}+i \mathbf{k} \cdot\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=0 \tag{15a}\\
\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=\left[U_{0}\langle\mathbf{u} \hat{P}\rangle_{\theta, r}-D_{T}\left(i \mathbf{k}\langle\hat{P}\rangle_{\theta, r}+\left\langle\nabla_{r} \hat{P}\right\rangle_{\theta, r}+\left\langle\hat{P} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \tag{15b}
\end{gather*}
$$

We define the Fourier transformed structure function in terms of the Fourier transformed probability and macroscopic density $\hat{G}(\mathbf{k}, \mathbf{r}, \theta, t)=\hat{P} / \hat{n}$. We multiply Eq. 15 by \hat{G} and subtract from Eq. 11

$$
\begin{equation*}
\frac{\partial \hat{P}}{\partial t}-\hat{G} \frac{\partial \hat{n}}{\partial t}+i \mathbf{k} \cdot\left(\hat{\mathbf{J}}_{T}-\hat{G}\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}\right)+\nabla_{r} \cdot \hat{\mathbf{J}}_{T}+\frac{\partial}{\partial \theta} \hat{J}_{\theta}=0 \tag{16}
\end{equation*}
$$

Now divide the equation by \hat{n}, recognizing that from the chain rule acting on $\hat{P}=\hat{G} \hat{n}$ gives $\frac{\partial \hat{P}}{\partial t}-\hat{G} \frac{\partial \hat{n}}{\partial t}=\hat{n} \frac{\partial \hat{G}}{\partial t}$

$$
\begin{gather*}
\frac{\partial \hat{G}}{\partial t}+\frac{1}{\hat{n}} i \mathbf{k} \cdot\left(\hat{\mathbf{J}}_{T}-\hat{G}\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}\right)+\frac{1}{\hat{n}} \nabla_{r} \cdot \hat{\mathbf{J}}_{T}+\frac{1}{\hat{n}} \frac{\partial}{\partial \theta} \hat{J}_{\theta}=0 \tag{17a}\\
\frac{1}{\hat{n}} i \mathbf{k} \cdot\left(\hat{\mathbf{J}}_{T}-\hat{G}\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}\right)=i \mathbf{k} \cdot(\\
U_{0} \mathbf{u} \hat{G}-\hat{G} U_{0}\langle\mathbf{u} \hat{G}\rangle_{\theta, r} \tag{17b}\\
-D_{T}\left[\left(i \mathbf{k}+\nabla_{r}\right) \hat{G}+\hat{G} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right]+\hat{G}\left[D_{T}\left(i \mathbf{k}\langle\hat{G}\rangle_{\theta, r}+\left\langle\nabla_{r} \hat{G}\right\rangle_{\theta, r}+\left\langle\hat{G} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \\
\frac{1}{\hat{n}}\left(\nabla_{r} \cdot \hat{\mathbf{J}}_{T}+\frac{\partial}{\partial \theta} \cdot \hat{J}_{\theta}\right)=\nabla_{r} \cdot\left[U_{0} \mathbf{u} \hat{G}-D_{T}\left(\left(i \mathbf{k}+\nabla_{r}\right) \hat{G}+\hat{G} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right]+\frac{\partial}{\partial \theta}\left[-D_{\theta}\left(\frac{\partial}{\partial \theta} \hat{G}+\hat{G} \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right)\right] \tag{17c}
\end{gather*}
$$

\hat{n} only depends on time and wavenumber, so it can be brought into the derivatives and integrals.
After taking advantage of the fact that $\hat{P} / \hat{n}=\hat{G}$, we expand \hat{G} in low wave numbers, and then we group terms in Eq. 17 based on \mathbf{k} order.

$$
\begin{equation*}
\hat{G}(\mathbf{k}, \mathbf{r}, \theta, t)=g(\mathbf{r}, \theta, t)+i \mathbf{k} \cdot \mathbf{d}(\mathbf{r}, \theta, t)+\mathscr{O}(\mathbf{k} \mathbf{k}) \tag{18}
\end{equation*}
$$

The $\mathscr{O}(1)$ term, or the \mathbf{k}-independent field g represents the local probability density in a periodic array with identical conditions.

$$
\begin{gather*}
\frac{\partial g}{\partial t}+\nabla_{r} \cdot \mathbf{j}_{T}^{(0)}+\frac{\partial}{\partial \theta} j_{\theta}^{(0)}=0 \tag{19a}\\
\mathbf{j}_{T}^{(0)}=U_{0} \mathbf{u} g-D_{T}\left(\nabla_{r} g+g \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{19b}\\
j_{\theta}^{(0)}=-D_{\theta}\left(\frac{\partial}{\partial \theta} g+g \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{19c}
\end{gather*}
$$

The $\mathscr{O}(\mathbf{k})$ field \mathbf{d} is the dispersion field. It represents the first correction due to dispersion from to a mild concentration gradient.

$$
\begin{gather*}
\frac{\partial \mathbf{d}}{\partial t}+\nabla_{r} \cdot \mathbf{j}_{T}^{(1)}+\frac{\partial}{\partial \theta} \mathbf{j}_{\theta}^{(1)}+U_{0} \mathbf{u} g-g U_{0}\langle\mathbf{u} g\rangle_{\theta, r}-D_{T}\left[\nabla_{r} g+g \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right]+g D_{T}\left[\left\langle\nabla_{r} g\right\rangle_{\theta, r}+\left\langle g \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right]=0 \tag{20a}\\
\mathbf{j}_{T}^{(1)}=U_{0} \mathbf{u d}-D_{T}\left(g \mathbf{I}+\nabla_{r} \mathbf{d}+\mathbf{d} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{20b}\\
\mathbf{j}_{\theta}^{(1)}=-D_{\theta}\left(\frac{\partial}{\partial \theta} \mathbf{d}+\mathbf{d} \frac{\partial}{\partial \theta}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right) \tag{20c}
\end{gather*}
$$

These equations are solved under periodic boundary conditions subject to $\langle g\rangle_{\theta, r}=1$ and $\langle\mathbf{d}\rangle_{\theta, r}=\mathbf{0}$.
Finally, we can relate averages of the local density and fluctuation to transport quantities via the macroscopic density equation:

$$
\begin{gather*}
\frac{\partial \hat{n}(\mathbf{k}, t)}{\partial t}+i \mathbf{k} \cdot\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=0 \tag{21a}\\
\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=\hat{n}\left[\mathbf{U}_{\mathbf{E}}-i \mathbf{k} \cdot \mathbf{D}_{\mathbf{E}}\right]=\left[U_{0}\langle\mathbf{u} \hat{P}\rangle_{\theta, r}-D_{T}\left(i \mathbf{k}\langle\hat{P}\rangle_{\theta, r}+\left\langle\nabla_{r} \hat{P}\right\rangle_{\theta, r}+\left\langle\hat{P} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \tag{21b}
\end{gather*}
$$

Replace $\hat{P}=\hat{n}(g+i \mathbf{k} \cdot \mathbf{d}+\ldots)$

$$
\begin{equation*}
\left\langle\hat{\mathbf{J}}_{T}\right\rangle_{\theta, r}=\left[U_{0}\left\langle\mathbf{u} \hat{n}(g+i \mathbf{k} \cdot \mathbf{d}\rangle_{\theta, r}-D_{T}\left(i \mathbf{k}\langle\hat{n}(g+i \mathbf{k} \cdot \mathbf{d})\rangle_{\theta, r}+\left\langle\nabla_{r} \hat{n}(g+i \mathbf{k} \cdot \mathbf{d})\right\rangle_{\theta, r}+\left\langle\hat{n}(g+i \mathbf{k} \cdot \mathbf{d}) \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right]\right. \tag{22}
\end{equation*}
$$

Factor out \hat{n} and remove the higher order $\mathscr{O}(\mathbf{k k})$ term

$$
\begin{equation*}
\hat{n}\left[\mathbf{U}_{\mathbf{E}}-i \mathbf{k} \cdot \mathbf{D}_{\mathbf{E}}\right]=\hat{n}\left[U_{0}\langle\mathbf{u}(g+i \mathbf{k} \cdot \mathbf{d})\rangle_{\theta, r}-D_{T}\left(i \mathbf{k}\langle g\rangle_{\theta, r}+\left\langle\nabla_{r}(g+i \mathbf{k} \cdot \mathbf{d})\right\rangle_{\theta, r}+\left\langle(g+i \mathbf{k} \cdot \mathbf{d}) \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \tag{23}
\end{equation*}
$$

Finally, grouping like terms

$$
\begin{gather*}
\mathbf{U}_{\mathbf{E}}=\left[U_{0}\langle\mathbf{u} g\rangle_{\theta, r}-D_{T}\left(\left\langle\nabla_{r} g\right\rangle_{\theta, r}+\left\langle g \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \tag{24}\\
\mathbf{D}_{\mathbf{E}}=D_{T} \mathbf{I}-\left[U_{0}\langle\mathbf{u d}\rangle_{\theta, r}-D_{T}\left(\left\langle\nabla_{r} \mathbf{d}\right\rangle_{\theta, r}+\left\langle\mathbf{d} \nabla_{r}\left[\frac{V}{k_{\mathrm{B}} T}\right]\right\rangle_{\theta, r}\right)\right] \tag{25}
\end{gather*}
$$

