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1 Potential Energy of a Discrete Rod in an External Field

In this section, we derive the effective potential energy a rod center of mass experiences at a given position and orientation.
This derivation applies to rods made of a discrete number of point masses separated by distance o. In the thin rod limit,
we show that the energy for a discrete rod matches the continuous solution described in the main text.

For a rod made of N; monomers spaced at distance o, the potential acting on each monomer can be described by a
Fourier series.
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The position of each monomer on the rod can be described by:
r, =r-+s;ou (2)

where u = {cos(8),sin(8)}” is the orientation vector describing the direction to step away from the rod center of mass r.
s; is an integer counting the number of monomer units away from the center of mass. For example, provided there are an
odd number of monomers:
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The potential energy of the entire rod is then:
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Except for s; = 0 there are (N, — 1)/2 pairs of beads on opposite sides of the center of mass: s; = £1,£2, ..., (N, — 1) /2.
Using the angle sum/difference formula we can describe the pairs as
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Simplifying the sum provides the following expression:
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The inner series can be solved exactly via telescopic sums:
si=(Ns—1)/2

Sy=2 Z cos(2mk,, - siou) (6a)
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Su = csc(Kyyy - ou) sin(Ny Ky, - ou) — 1 (6b)

Plugging this into the Eq. [5| gives the potential energy of a rod made of Ny, monomers separated by distance ¢ in an
external field.

1 .
Vikoa(r,0) = 7 Z Qe T esc (mokyy - u) sin (TN;0kpy, - 0) @)

S nm

The discrete solution matches the continuous solution when N, = 6! Lg,4, and ¢ — 07
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The convergence of the limit can be found by the Taylor series expansion around ¢ — 0"
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2 Taylor Dispersion Theory for Active Rods

The general Smoluchowski equation for a thin active rod moving at a constant swim velocity Uy under an external potential
field V(x,r, 0,¢) is given as:
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Where x is the lattice vector denoting global position, r is the local vector denoting position inside a periodic cell, 8 is
the rod orientation angle, u = [cos(8),sin(8)]” is the orientation unit vector, and ¢ is time. kT is the thermal energy and

D(u) is the orientationally dependent diffusivity tensor. Assuming the potential is constant between lattices. V, [,{BLT} =0.
We simplify the equation and then take the Fourier transform over the lattice vector x — k.
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Define the macroscopic number density 7i(k,?) = <13>9_r, and then take the orientational and local position average of
Eq. (f)q is the integral of f over coordinate q.
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From the divergence theorem, we know that (V- jT>9.r =0and <%f9>6 =0.

2.0.1 General Fourier Transformed Macroscopic Number Density Equation
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2.1 Assuming isotropic diffusivity
Assuming D(u) = DyI The Fourier Transformed Smoluchowski equation is:
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And the macroscopic density is:
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We define the Fourier transformed structure function in terms of the Fourier transformed probability and macroscopic
density G(k,r, 0,1) = P/i. We multiply Eq. by G and subtract from Eq.
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Now divide the equation by #, recognizing that from the chain rule acting on P = G gives % G2 = ﬁ%G
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A only depends on time and wavenumber, so it can be brought into the derivatives and integrals.
After taking advantage of the fact that 2// = G, we expand G in low wave numbers, and then we group terms in Eq.
based on k order.

G(k,r,0,t) = g(r,0,1) +ik-d(r,0,) + O(kk) (18)

The (1) term, or the k-independent field g represents the local probability density in a periodic array with identical
conditions.
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The 0'(k) field d is the dispersion field. It represents the first correction due to dispersion from to a mild concentration
gradient.
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These equations are solved under periodic boundary conditions subject to (g)g , = 1 and (d), , = 0.
Finally, we can relate averages of the local density and fluctuation to transport quantities via the macroscopic density
equation:

oalk,t) . 4

%—Flk- (1), =0 (21a)
% A . o LA N o \%
<JT>6,r = n[UE _lk'DE] = |Uo <up>9,r_DT <lk <P>97r+ <VrP>97r+ <Pvr |:kBT:| >9,r>] (21b)

Replace P =fi(g+ik-d+...)
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Factor out 7 and remove the higher order &'(kk) term
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Finally, grouping like terms
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