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S1. Additional computational details 

S1.1. Coarse-grained model details  

Figure S1 shows a sequence of three aminoacids GLU-LYS-LEU from 𝛼-lactoalbumin. Figure S1A 

depicts the model obtain from the PDB structure corresponding to the protein (1F6S), the alpha carbon 

(CA) is shown as yellow beads, the carbon from the peptide bond is shown in gold and then oxygen, 

nitrogen and other carbons are depicted as red, blue and aquamarine beads. 

Figure S1B shows the coarse-grained model used to represent the protein in the simulation. In this 

model, the alpha carbon (yellow bead) has the same position than in the PDB structure. The side chain 

position is calculated computing the center of mass of all the atoms involve and the radius 

corresponds to its radius of gyration. 

 

 

 

 

 

 

 

Figure S1.  Model representation of a three aminoacid GLU-LYS-LEU sequence from 𝛼-
lactalbumin (A) Model representation of the structure obtained from the PDB and (B) Coarse-
grained model. 



S1.2. Interaction energy 

The total energy of the system is given by pair-wise electrostatic interactions: 
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where 𝑁 is the total number of particles: 𝑁 = 𝑁)*+, +𝑁-. +𝑁-) +𝑁/0; 𝑁)*+,  is the number of 

protein beads, 𝑁/0 is the number of monomer of the polyelectrolyte and 𝑁-.  and 𝑁-) the number of 

small cations and anions, respectively. The interaction between two particles is given by the Coulomb 

potential corrected with a hard sphere core: 
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where 𝑟"# = 3𝑟" − 𝑟#3 is the distance between particles i and j,  𝑙5 = 𝑒6/4𝜋𝜀4𝜀7𝑘!𝑇 is the 

Bjerrum length, 𝑘!𝑇  is the thermal energy and 𝜀 = 𝜀4𝜀7 is the dielectric constant of the solvent. The 

charge of a particle 𝑞" can be calculated as the product of the elementary charge (𝑒) times its valence 

(𝑧"), i.e.  𝑞" = 𝑒𝑧". We consider 𝑙8  ≈ 0.71 nm corresponding to water at room temperature as solvent. 

Ewald sums were used to calculate the electrostatic energy. 

 

S.1.3. Monte Carlo simulation 

 

S1.3.1 General description  

 The Monte Carlo (MC) simulations were performed using the Metropolis algorithm1,2. In each 

MC simulation, we performed 2 × 109 MC steps, where the first 109 steps were discarded as part of 

the equilibration and the remaining 109  MC steps were used to calculate the ensemble averages. To 

sample the system, we used three types of trial moves: i) translational motion of small ions, ii) 

protonation/deprotonation of the acidic and basic groups of the protein, and iii) creation/destruction of 

neutral pairs of small ions.   



 

S1.3.2 Trial move: titration of the acid and basic groups 

The ionization state of the titratable groups is sampled in the Semi-Grand Canonical ensemble, which 

is described in detail found in references3,4.    

In this procedure, the charge of one of the acid or basic groups is changed in mimicking the protonation 

or deprotonation processes described in Eqs. S5 and S6. The electroneutrality of the system is preserved 

by creating or destroying one small ion with the opposite charge matching the new ionization state of 

the acidic/basic group. These protonation or deprotonation trial moves were accepted with probability  
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Where the sign – or + corresponds to the protonation or deprotonation, respectively.  

This equation is an adaptation obtained from the work of Reed and Reed, which studied the 

average fractional ionization 𝛼 as a function of the pH using Metropolis Monte Carlo algorithm for a 

linear polyelectrolyte. The PE chain is treated as a threefold rotational isomeric state model polymer, 

where each unit can have two states: negatively charged or neutral. They assume a Debye-Hückel 

screening between charges and that the polymer has the same dielectric constant than the solvent. The 

number of units in the polyelectrolyte was given by 𝑁. For their system they write the equation for the 

average Gibbs free energy 𝐹 per individual polymer chain as: 

 

 

𝐹 = 	𝑈 − 𝑇𝑆 − ln(10) 𝑘8𝑇	𝑁	𝛼(p𝐻 − p𝐾:) 
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where 𝑈 is the average electrostatic energy, 𝑆 is the configurational entropy, 𝛼 the average dissociation 

degree and 𝑁 the number units of the polyelectrolyte chain. Then, defining: 

𝑋 ≡ ln	10 ⋅ 𝑘8𝑇	𝑁(p𝐻 − p𝐾:) 

 

(S14) 

 

𝐹 = 𝑈 − 𝑇𝑆 − 𝑋	𝛼 

(S15) 



 

 

Next, Reed and Reed calculate the probability of a state J : 
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This probability takes as a reference state a completely deionized chain, where all its groups are 

neutral. This state is called N and has U(𝐽) = 0	and α𝐽 = 0. 

 

In our system, we simulate a protein as a rigid body that has 8 types of titratable groups (given 

in Table 1 of the main text). Each titratable group type of protein has a number total of elements 𝜔", 

which is equivalent to the variable N used for Reed and Reed. For example, for the aspartic acid 𝜔" =

13 and the 𝑝𝐾ai = 4.  

Then the probability 𝑝 for our system is: 
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Where the original term α𝐽𝑁 is replacement for: 

 

𝜔"α;	 = 𝑛)!#
;  

  

with α𝐽	 =
𝑛𝐴𝑖−
𝐽

𝜔𝑖
, where 𝑛𝐴𝑖−

𝐽  is the number of groups 𝑖 that are ionized in the estate 𝐽.  

 

To accurately execute the Monte Carlo simulation, the transition matrix 𝜋𝑂→𝑁  from an old state 

(O) to a new state (N) , wherein a deprotonation or protonation assay is conducted, must adhere to the 

principle of detailed balance: 
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Or 
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Where Δ𝑈J→K = U(N) − U(O) and $𝑛𝐴𝑖−
𝑁 − 𝑛𝐴𝑖−

𝑂 % is the change in the number of dissociate groups. For 

the dissociation/deprotonation trail this is $𝑛𝐴𝑖−
𝑁 − 𝑛𝐴𝑖−

𝑂 % = 1 and for the protonation trail this value is 

−1, which explains the term ± in equation S12.  

 

 

S1.3.3 Trial move: translation of small ions 

In each MC step, a new configuration is generated which consists of a translational move per 

small ion5 . The translational trial move is accepted according to the probability  
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where Δ𝑈 is the difference in the energy between the new and old configurations. Note that we 

approximate the protein as a rigid body, thus configurational movements were not performed to the 

protein beads.  

S1.3.4 Trial move: rotation of the oligoelectrolyte chain 

The rotation of the oligoelectrolyte chain requires as a first step to choose a rotation axis given by the 

unit vector 𝑢 = (𝑎, 𝑏, 𝑐) 6. For practical purposes, the initial point of this vector is in the centre of 

mass of the oligoelectrolyte chain:  
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The rotation is applied to the relative position of the monomers with respect to the center of mass 

(𝑟NOP(𝑖) − 𝑟LM). Then, the expression for the new position is: 



𝑟QRS(𝑖) = 𝐴T,V(𝑟NOP(𝑖) − 𝑟LM) + 𝑟LM 

(S21) 

where 𝐴T,V is the standard matrix for a counterclockwise rotation through a random angle 𝜃 about 𝑢 

𝐴T,V = p
𝑎6(1 − cos	θ) + cos	θ		 𝑎𝑐(1 − cos	θ) − 𝑐	sin	θ 𝑎𝑐(1 − cos	θ) + 𝑏	sin	θ	
𝑎𝑏(1 − cos	θ) + 𝑐	sin	θ 𝑏6(1 − cos	θ) + cos	θ 𝑏𝑐(1 − cos	θ) + 𝑎	sin	θ	
𝑎𝑐(1 − cos	θ) + 𝑏	sin	θ 𝑏𝑐(1 − cos	θ) + 𝑎	sin	θ	 𝑐6(1 − cos	θ) + cos	θ

v 
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This trial move is accepted according to the probability of Equation S136. 

S1.3.5 Trial move: pivot and bending movement of an oligoelectrolyte chain segment 

The pivot and bending movement consist on the rotation of a oligoelectrolyte chain segment6. For the 

pivot movement, the unit vector 𝑢 = (𝑎, 𝑏, 𝑐) determines the rotation axis. Then, we choose a random 

monomer 𝑗, and the initial point of this vector is the position 𝑟2. The segment from monomer 𝑗 to the 

end of the chain is rotated following the choise of a random angle 𝜃 about 𝑢: 

𝒓𝐧𝐞𝐰(𝒊) = 𝑨𝛉,𝐮(𝒓𝐨𝐥𝐝(𝒊) − 𝒓𝐣* + 𝒓𝐣 

(S23) 

where 𝐴T,V is the standard matrix given in Equation S15. 

In the case of the bending move, the rotation of an oligoelectrolyte chain segmen is between two 

monomeros 𝑗 and 𝑘. The rotation axis is defined by the directation that connect the two monomers: 

𝑢 =
𝑟 − 𝑟2
3𝑟 − 𝑟23

 

(S24) 

The starting point of this vector is the position 𝑟2. The pivot and bending trial moves are accepted 

according to Equation S136. 

S1.3.6 Trial move: creation and destruction of neutral pairs of small ions 

The values of 𝛾±  and 𝜌 for the salt concentrations considered in this work for Equation 12 on the main 

text are given in Tab. S1: 



𝑐b+cd[mM] 𝑙𝑛	𝛾± 𝜌 [particles/ nm3] 

1 0.0122 6.022	10%e 

10 -0.087 6.022	10%f 

100 -0.232 6.022	10%6 

Table S1. Mean activity coefficient 	𝛾± and density of small ions 𝜌 at the three salt concentrations of 

the reservoir 𝑐b+cd of study. 

 

S2. Average electrostatic potential: different reference point  

 

Figure S1 shows the average electrostatic potential as a function of the protein centre of mass. In this 

case, the value of 𝜓� = 0 was located on the protein centre of mass.  

 

 

Figure S1. Average electrostatic potential as a function of the distance r to the protein centre of mass. 

 

 

S3. Electrostatic potential of α-lactalbumin – oligoelectrolyte complex for Nm = 7 y 

Nm = 8. 

 



Figure S2 shows the average electrostatic potential as a function of the distance r. 

 

 

 

Figure S2. Average electrostatic potential as a function of the distance r for (A) 𝑁g = 	7 and 

(B) 𝑁g = 	8. In both cases pH = 3. 

 

S4. Surface electrostatic potential of 𝜶-lactalbumin – oligoelectrolyte complex for 𝑵𝒎 = 𝟕 y 

𝑵𝒎 = 𝟖. 

 

 

Figure S3. Surface electrostatic potential as a function of the pH for (A) 𝑁g = 7 and (B) 𝑁g = 8 
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