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Fig. S1. FTIR spectrum of DETA.
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Fig. S2. Mass change curve of PAA/DETA hydrogels during immersing in calcium acetate
solution over 72 h. Calcium acetate solutions (0.25 M, 0.5 M, 0.75 M,1 M) were used.
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Fig. S3. TGA thermograms of 2CH-gel with 0.42 M of DETA and with different Ca(Ac),
concentration.
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Fig. S4. Comparison of mechanical properties of 2CH-gel. (A) Comparison of fracture energy
and modulus of PAA/DETA at different DETA concentrations at 20°C. (B) Comparison of
fracture energy and modulus of PAA/DETA at different calcium acetate concentrations at 20°C.
The concentration of DETA concentration is 0.42 M. (C) Comparison of the modulus of
PAA/DETA at 20°C and 70°C with different calcium acetate concentrations. The concentration

of DETA is 0.42 M.

A L x0.14
___125- B Xo.26
X X
.8,100_ :[7 I | 0.42
% r | i |
o 751
£
i
£ 50
(T8
©
n 25

0-
0 0.25 0.5 0.75

[Ca(Ac),] (mol/L)

o
=}
w
=3

0.25 4

Stress (MPa)

0.05 -

0.00

0.20 4

0.15 -

0.10 1

Xo.42-Cag.75

— Xop28Cag 75
— Xp.14-Cag 75

— Xp.44-Cag 75 Repair

400 600
Strain (%)

800

1000

Fig. SS. Self-healing properties of 2CH-gel. (A) The self-healing efficiency of 2CH-gel with
different concentration of DETA and Ca(Ac),. (B) tensile curves of 2CH-gel before and after

self-healing.
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Fig. S6. Oscillatory amplitude sweep of 2CH-gel with and without Ca(Ac),.

Fig. S7. Photos showing the self-healing performance of 2CH-gel. The 2CH-gel is broken into
3 sections by external force, and the 3 sections are placed together in a humid environment and
can repair themselves with only 10 seconds of gentle pressure, the middle hydrogel is stained
with eosin to make the display effect more obvious. Scale bars = 1.0 cm.
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Fig. S8. Loss tangent as function of temperature of 2CH-gel with and without Ca(Ac)s.
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Fig. S9. Angular frequency sweeps of 2CH-gel at different temperatures. (A) Storage modulus
and loss modulus of X 4,-Cag at 20°C. (B) Storage modulus and loss modulus of X 4,-Cay 75 at
20°C. (C) Storage modulus (G') and loss modulus (G") of X4,-Cay at 70°C. (D) Storage
modulus and loss modulus of X 4,-Ca 75 at 70°C. All experimental strains were 0.05%.
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Fig. S10. Photos showing the thermal stiffening effect of 2CH-gel. A piece of 2CH-gel was
heated in hot water at 70°C for 10 s, and then it could support a 100 g weight without
deformation. (Sample size: ~20 mm x60 mm x 1 mm). Scale bars = 1.0 cm.
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Fig. S11. Stress-strain curves of X 4,-Caj and X 4,-Ca, 75 before and after self-healingat 20 °C
and 70 °C.
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Fig. S12. (A) Fatigue resistance of X 4,-Cag 75. (B) Tear resistance of X 4,-Cag 75.
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Fig. S13. The influences of the temperature and concentration of Ca(Ac), aqueous solution on

the shape fixity ratio of 2CH-gel.
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Fig. S14. Storage modulus (G") and loss modulus (G") of 2CH-gel as a function of temperature.

(A) Storage modulus (G') and loss modulus (G") of X 4,-Cag 75 as a function of temperature.

(B) Storage modulus (G') and loss modulus (G") of X 4,-Cags¢ as a function of temperature.

(C) Storage modulus (G') and loss modulus (G") of X 4,-Cay»5 as a function of temperature.
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Fig. S17. 3D message encryption display of 2CH-gel. X 4,-Cag 50 and X 4,-Cag 75 hydrogels
are assembled into a star-shape, letters are printed on each corner and the star-shaped hydrogel
are fixed into a tetrahedron by heating at 70°C. Each corner has a different opening speed to
display information (left), while the star-shaped hydrogel can be re-assembled to display
different information (right). Scale bars = 1.0 cm.
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Fig. S19. Weight change before (20°C) and after (70°C) phase separation, sample numbers n

= 10.
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Fig. S18. Schematic illustration and photos showing the information encryption and decryption
of 2CH-gel based on the editable shape memory function. X 4,-Cag 5o and X 4,-Cayg 75 hydrogel
strips were put together in different sequences, then the hydrogel strip was fixed into specific
shapes at 70°C, and the hydrogel could display different messages due to the different softening
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Fig. S20. (A) Alternating strain rheology curves (high strain (250%) and low strain (1.0%)) of

2CH-gel without Ca(Ac), after being remodeled. (B) Temperature scanning rheology curves of
2CH-gel without Ca(Ac), after being remodeled.
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Fig. S21. (A) Tensile curves of 2CH-gel after remodeling. (B) The Young's modulus, fracture
energy, and fracture energy recovery rate of 2CH-gel after remodeling.
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Fig. S22. Cyclic testing indicates the reversible phase separation behavior exhibited by 2CH-
gel after remodeling.
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Fig. S23. The influences of the temperature and concentration of Ca(Ac), aqueous solution on
the shape fixity ratio of 2CH-gel after remodeling.

Table S1. Compositions for 2CH-gel in this work.

Entry Sample AAC_1 DETél Ca(Ac_)lz
(mol L ) (mol L) (mol L")
1 X,Ca, 3.5 0 0
2 X, 14-Ca, 3.5 0.14 0
3 X, .5-Ca, 3.5 0.28 0
4 X, ,Ca, 3.5 0.42 0
5 X, ,-Ca, 3.5 1.2 0
6 X 10Ca s 3.5 0.42 0.25
7 X, 10-Cay 5 3.5 0.42 0.50
8 X 10Ca s 3.5 0.42 0.75
9 X,0-Ca, 3.5 0.42 1.0
10 X 14-Ca s 3.5 0.14 0.75
11 X 25-Ca s 3.5 0.28 0.75
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Table S2. Comparison of mechanical properties before and after remodeling of X 4,-Cay 75 at

70 °C.
Original Remodeled Recyle
Xo.42-Cag 75 )
state state efficiency (%)
Thermal hardening fracture
0.220 0.0687 31.2
energy (MJ/m?)
Thermal hardening young's
& youns 130 104 80.5
modulus (MPa)
Thermal hardening breaking
10.8 5.72 52.9

elongation (%)

Table S3. Comparison of mechanical properties before and after remodeling of X 4,-Ca, 75 at

20 °C.
Original Remodeled Recyle efficiency
Xo.42-Cag 75
state state (%)
Fracture energy
0.913 0.567 62.1
(MJ/m?)
Young's modulus
0.157 0.0942 59.8
(MPa)
Breaking elongation
792 731 923

(%)
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