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Supplementary Text

S1. Assembling initial slabs

We started by assembling initial slabs, wherein a given volume V of oil is covered by two

flat lipid monolayers from below and above with their hydrophobic chains facing the oil, see

Fig. 1a and supplementary Fig. S1b. Initial monolayers were assembled by placing different

number of lipids Nlip, equally divided between two monolayers of fixed width L in a cubic

simulation box with periodic boundary conditions. Each slab with a given number of lipids

Nlip has then a fixed projected area-per-lipid Alp = 2As/Nlip, defined as the average area-

per-lipid projected into the horizontal plane.

S2. Shape parameters of LDs

We first computed the thickness of the ER-bilayer lb = 4.08 nm as the distance between

the peaks of the density of lipid head groups of a flat bilayer, see supplementary Fig. S1a.

The monolayer thickness was then taken to be lm = 0.5lb = 2.04 nm. We assumed that

LD-monolayers of all LDs, obtained from DPD simulations, have the shape of spherical caps

to minimize membrane bending cost for a given membrane surface area. To find the shape of

symmetrical LD lenses and spherical LDs, we fitted spherical caps to the simulation results

and computed their shape parameters according to Figure 2a. Complete spheres of size

R = 0.5D were fitted to the asymmetric budding LDs. The contact point of the ER-bilayer

with these spheres were then used to find the LD angles as shown in the right panel of

Fig. 5b. The spherical caps of symmetrical LDs were parametrized by the radius of the

sphere and the Cartesian coordinates xs, ys, and zs of its center. The sum S of the mean

square distances of all beads i of LD lipids from the surface of the cap

S =
X

i

�p
(xi � xs)2 + (yi � ys)2 + (zi � zs)2 �R

�2
(S1)
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was then minimized by setting the derivatives

@S/@xs = @S/@ys = @S/@zs = @S/@R = 0 (S2)

leading to a system of four equations from which the radius R of the cap and the Cartesian

coordinates of the cap center were obtained. The contact angle was then computed from

the fitted cap. In this way, we fitted spherical caps to LD-monolayers and obtained the radii

and lens angles of the luminal and cytosolic LD-monolayers for different LD shapes.

S3. Membrane tension and bending stiffness

To find membrane properties such as membrane thickness and bending stiffness of bilayers

and monolayers, we simulated small flat bilayers and small slabs. The slabs were simulated

in a cubic box of fixed width 25.6 nm and initial height 25.6 nm with Noil = 10, 363 oil

molecules surrounded by 35, 852 water beads forming slabs of size D = 24.2 nm, see Fig. 1a.

The number of lipids Nlip, equally partitioned between the two slab monolayers, was varied

to generate slabs with different Alp, see supplementary Table S2. Flat bilayers were also

simulated in cubic boxes of the same size with the same Nlip and thus the same Alp as the

slabs, see the snapshot in supplementary Fig. S2c and the data in supplementary Table S2.

Both slabs and flat bilayers were first equilibrated for 2 µs in an NPT ensemble using

a Berendsen barostat in the vertical direction z, see supplementary Fig. S2a,c, adjusting

the pressure at 23.7 kBT/d3 = 190.4 ⇥ 109 mN/m2
. During NPT simulations the height of

the simulation boxes changed to adjust the pressure while their widths remained constant

at 25.6 nm. We note that the density of the simulation box, including both water and

oil, slightly varies during NPT simulations but the water density remains at 5.86/nm3
as

shown in the density plots in the bottom panels of Fig. S1. Membrane tensions were then

computed in following 22 µs-long runs in an NVT ensemble with fixed simulation boxes at
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room temperature. We used the integral

⌃ =

Z h

�h

s(z)dz =

Z h

�h

[PN(z)� PT (z)]dz (S3)

of the stress profile s(z) = PN(z) � PT (z) to find both monolayer and bilayer tensions, ⌃m

and ⌃b, respectively. Here, PN and PT denote normal and tangential pressure components,

computed across an almost planar patch of a bilayer or a monolayer membrane in the z

direction perpendicular to the membrane surface.
1,2

We first calculated membrane tensions

inside small slabs of size D = 24.2 nm to demonstrate that monolayer tensions increase

linearly with Alp. The Cartesian coordinate system was placed in the center of the slabs and

the stress profile was computed inside a box of width 13 nm and height 2h = 20 nm, see

supplementary Fig. S2a. The monolayer tensions were then calculated as

⌃lm =

Z h

0

s(z)dz =

Z h

0

[PN(z)� PT (z)]dz

⌃cm =

Z �h

0

s(z)dz =

Z �h

0

[PN(z)� PT (z)]dz

(S4)

The monolayer tension ⌃m = 0.5(⌃lm + ⌃cm) was taken to be the average of almost equal

tensions in the outer (cytosolic) and inner (luminal) monolayers. Supplementary Figure S2b

shows the stress profiles of some of these small slabs with corresponding ⌃m’s and Alp’s

whose values are listed in supplementary Table S2.

We computed the monolayer tension ⌃m in the initial flat monolayers of three small slabs

of size D = 24.2 nm and area As = 655.4 nm2
, with different Alp’s, see Fig. 1b. The slab

area was chosen to be smaller than Asm = 1115.3 nm2
for L = 25.6 nm to prevent the

slab-to-lens transition. The monolayer tension increased from 0.4 mN/m for Alp = 0.72 nm2

to 10.5 mN/m for Alp = 0.82 nm2
corresponding to monolayers with Nlip = 1800 and

Nlip = 1600 lipids, respectively, see supplementary Fig. S2b and Table S2. We thus verified

that lipid membranes with larger Alp’s experience larger membrane tensions.

We then used equation (S3) to obtain stress profiles of flat bilayers in a box of width
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13 nm and initial height h = 5 nm, see supplementary Fig. S2c. Supplementary Figure S2d

shows the resulting stress profiles across two flat bilayers. For both bilayers and monolayers

(slabs), membrane tensions and areas-per-lipid were averaged over 400 simulation frames.

These simulations were performed for 20 µs in an NVT ensemble during which 400 equally

distanced frames were picked to compute the average ⌃’s and Alp’s as listed in supplementary

Table S2. These tensions, plotted against the corresponding Alp values by blue and red dots

in supplementary Fig. S2e, were then used to compute the bending rigidities of the ER-bilayer

and LD-monolayers.

We fitted a line to the data of ⌃m versus Alp, and found Am
l0 = 0.715 nm2

corresponding

to zero tension ⌃m = 0. The area extension elastic modulus was then obtained as the

product Km
A = Am

l0(d⌃m/dAm
l ) = 68.3 pN/nm, where d⌃m/dAm

l = 95.6 pN/nm3
.
3

The

bending rigidity of the monolayer was then found as m = (1/12)Km
A l2m = 23.7 pN · nm,

where lm = 2.04 nm is the monolayer thickness i.e. half the bilayer thickness lm = 0.5lb. A

similar procedure was used to find the bending rigidity of the ER-bilayer as:

d⌃b/dA
b
l = 215.3 pN/nm3

Ab
l0 = 0.778 nm2

Kb
A = Ab

l0(d⌃b/dA
b
l ) = 167.5 pN/nm

b = (1/48)Kb
Al

2
b = 58.1 pN · nm

(S5)

In this way, we found the bending rigidities, b = 58.1 pN · nm and m = 23.7 pN · nm, of

the ER-bilayer and LD-monolayers, respectively.

S4. LD parameters

Spontaneous formation of LDs from initial oil slabs were simulated in a fixed simulation box

of size (48⇥48⇥72) nm3
composed of Nlip lipids placed in two monolayers exposed to water

from above and below with a fixed total of 972000 beads. The number of lipids was then
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varied, as listed in supplementary Table S3, to change the projected area-per-lipid Alp for

different LD sizes D = 29.5, 31, and 33.2 nm as seen in the morphological diagram in Fig. 1c.

Spontaneous formation of different LD structures occurred in 5 µs in an NPT ensemble at

constant pressure 190.4 ⇥ 109 mN/m2
, using a Berendsen barostat in the vertical direction

z perpendicular to the slab monolayers. The initial slabs transformed to a variety of LD

structures as shown in Fig. 1c.

S5. The transition of LD lenses to spherical LDs

We performed the transition simulations starting from an almost spherical LD of size D =

29.5 nm with the largest lens angle ✓ = 86�, spontaneously formed from an initial slab with

Noil = 21, 000 and Nlip = 6960. We then increased the width L of the simulation box in an

NPT ensemble with a barostat in the vertical direction z perpendicular to the ER-bilayer

for a constant number of lipids and water beads.

We increased the width of the simulation box at a rate 0.4 pm/ns resulting in a quasi-

equilibrium transition with intermediate equilibrium LD lenses.
4

The procedure was then

repeated successively to find different lenses shown in Fig. 2b. After reaching the target

box width for each lens angle, we continued the simulation for 8 µs, this time in the NVT

ensemble, the last 6 µs of which was used to compute membrane tensions by averaging

over 120 frames, and Al values, and LD shape parameters by averaging over 12 frames.

LD-tensions were computed, using the equations (S4), in a box of width 8 nm and height

48 nm, which contained almost flat monolayer patches as shown in supplementary Fig. S4.

ER-tensions were computed using equation (S3) inside a box of size (8 ⇥ 48 ⇥ 48) nm3
,

see supplementary Fig. S4. The same boxes were used to compute Al values for both the

ER-bilayers and LD-monolayers. Supplementary Table S4 lists the LD parameters for the

resulting seven LDs shown in Fig. 2b. To compare different LD sizes, we also performed

the transition simulations for another LD of size D = 27.7 nm with Noil = 16800 and

Nlip = 6800, the parameters of which are presented in supplementary Table S5. See the
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supplementary text for details on line tension calculation during LD transition.

S6. Line tensions in symmetrical LDs

The free energy of a symmetrical LD with the surrounding ER-bilayer is given by

Fs = 2Ebs + Abs⌃b + 2Ams⌃m + l� (S6)

Here, Ebs = 2mAms/R2
is the bending energy of the two symmetrical LD-monolayers, ⌃b

and ⌃m are the ER and LD-tensions, and � is the line tension acting along the perimeter

l = 2⇡Rco of the contact circle with radius Rco. Abs = L2 � ⇡R2 sin2 ✓ is the area of the

surrounding ER-bilayer of width L, Ams = 2⇡R2(1�cos ✓) is the surface area of the spherical

monolayers with identical radii R.

Minimizing the Lagrangian Ls = Fs � �Vs with respect to R and ✓ using a Lagrange

multiplier � to fulfil a constraint on fixed LD size Vs = ⇡D3/6, leads to a system of three

equations

Vs = (2⇡/3)R3(2 + cos ✓)(1� cos ✓)2

@Ls

@R
= 2⇡R2�(2 + cos ✓)(1� cos ✓)2 � 2⇡R sin2 ✓⌃b + 8⇡R(1� cos ✓)⌃m + 2⇡ sin ✓� = 0

@Ls

@✓
= (2⇡�R3/3)[2 sin ✓(2 + cos ✓)(1� cos ✓)� sin ✓(1� cos ✓)2] + 8⇡m sin ✓

+ 4⇡R2 sin ✓⌃m � ⇡R2 sin 2✓⌃b + (2⇡R cos ✓)� = 0

(S7)

with four variables R, ✓,�, �. To solve this underdetermined system, we substituted the

values of R, ⌃b, and ⌃m, obtained from the DPD simulations, into the system and solved

equations (S7) for the remaining three unknowns �, ✓, and �. The results for two LD sizes

are listed in Tables S4 and S5.
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S7. Membrane elasticity model for axisymmetric LDs

To determine the minimum energy shapes of symmetric lenses, we adapted a computational

approach used in
5

based on the elasticity theory of fluid membranes. Here, the bottom

monolayer of the lens is described as a smooth surface in terms of two parameters, the

angle � of rotation around the axis of symmetry, and the arc length s along longitudes.

This surface then has Cartesian coordinates X = R(s) cos �, Y = R(s) sin � and Z = Z(s),

where 0  �  2⇡ and 0  s  s1 and R is the distance from the Z-axis, which is

the axis of symmetry. We introduce a tangent angle  such that dR/ds = cos (s) and

dZ/ds = sin (s). In this parametrization, the volume of the lens is

V = 2⇡

Z s1

0

R2(s)
dZ

ds
ds (S8)

and the total area of the two monolayers enclosing the lens is

A = 4⇡

Z s1

0

R(s)ds (S9)

The lower limit of integration, s = 0, corresponds to the "south pole" of the lens at which

 (s = 0) = 0, R(s = 0) = 0 and Z(s = 0) = 0. With these boundary conditions we have

R(s) =
R s

0 cos (s0)ds0 and Z(s) =
R s

0 sin (s0)ds0. The upper limit of integration, s = s1,

corresponds to the lens rim, where  (s1) = 0 and R(s1) = R1 to connect the lens surface

smoothly to a flat bilayer at a distance R1 from the axis of symmetry. The circumference of

this rim is

` = 2⇡R1 = 2⇡

Z s1

0

cos (s)ds (S10)

The energy of the system E = Eb,m + Eb,b + Es,m + Es,b + El comprises five terms: the

bending energy Eb,m of the two monolayers, the bending energy of the flat bilayer, Eb,b = 0,

the surface energy Es,m of the monolayers, the surface energy Es,b of the bilayer, and the

line energy El of the lens rim. Since the principal curvatures of the lens surface are given by
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C1 = d /ds and C2 = sin /R in the arc-length parametrization,
6,7

the bending energy of

the two monolayers is

Eb,m = 2⇡m

Z s1

0

R(s)

✓
d 

ds
+

sin( (s))

R(s)
� C0

◆2

ds (S11)

where m and C0 are the bending rigidity modulus and the spontaneous curvature of the

monolayers, respectively. The surface energy of the monolayers Es,m = A⌃s, where ⌃s

denotes the surface tension of the monolayers, and the lens surface area A is given by

equation (S9). The surface energy of the bilayer Es,b = (L2 � ⇡R2
1)⌃b, where ⌃b denotes

the surface tension of the bilayer, and L is the lateral size of the system. The energy term

L2⌃b does not depend on the shape of the lens and can be omitted in numerical calculations.

Finally, the line energy El = �` = 2⇡R1�, where � denotes the line tension. It is convenient

to use dimensionless variables in numerical calculations. Here we introduce ⌧ = s/s1 with

⌧ 2 [0, 1],  (⌧) =  (s), r(⌧) = R(s)/s1 and z(⌧) = Z(s)/s1. Then, using equation (S8), s1

can be directly related to the volume V of the lens

V = 2⇡s31

Z 1

0

r2(⌧) sin( (⌧))d⌧ (S12)

In addition, with this choice of dimensionless variables, the total energy of the system can

be written as E = Eb + Em + El with

Eb = Eb,m + Eb,b = 2⇡m

Z 1

0

r(⌧)

✓
d 

d⌧
+

sin( (⌧))

r(⌧)
� C0s1

◆2

d⌧ (S13)

Es = Es,m + Es,b = 2⇡s21

✓
2⌃m

Z 1

0

r(⌧)d⌧ � 1

2
⌃b

Z 1

0

cos( (⌧))d⌧

◆
(S14)

and

El = 2⇡s1�

Z 1

0

cos( (⌧))d⌧ (S15)
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In equations (S13), (S14) and (S15), parameters m, C0, ⌃m, ⌃b, and � characterize the

mechanical properties of the system whereas s1 is determined by the volume V of the lens

via equation (S12). Since r(⌧) and z(⌧) are given by  (⌧) via

r(⌧) =

Z ⌧

0

cos (⌧ 0)d⌧ 0 (S16)

and

z(⌧) =

Z ⌧

0

sin (⌧ 0)d⌧ 0 (S17)

the shape of the lens is entirely determined by the function  (⌧), and the total energy

E = Eb + Em + El is a functional of  (⌧).

To minimize the total energy E with respect to the lens shape, as given by the function

 (⌧), it is convenient to approximate  (⌧) by a Fourier series
8,9

 (⌧) =
NX

n=1

an sin (n⇡⌧) (S18)

that fulfils the boundary conditions  (⌧ = 0) = 0 and  (⌧ = 1) = 0. Here, N is the number

of Fourier amplitudes an. The total energy E = Eb +Em +El, as given by equations (S13),

(S14) and (S15), becomes now a function of N variables {an}.

We minimized E with respect to the set of Fourier amplitudes {an} using a simulated

annealing method. We performed the numerical calculations with N = 100 Fourier modes as

in.
8,9

We assumed C0 = 0 whereas the values of parameters m, ⌃m, ⌃b, � and V were taken

from the optimal fits of the spherical cup model to the lens shapes obtained in the DPD

simulations. The resulting membrane profiles  =  (s) are shown in Figure 3 by yellow

curves juxtaposed on DPD simulation snapshots for different LD lenses.
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S8. LD budding by lipid exchange

Starting from an almost spherical LD of size D = 29.5 nm, we created an asymmetric

lipid number at constant Nlip (see Table S6) by exchanging lipids from the luminal to the

cytosolic LD-monolayer. The resulting LDs with a given � were then equilibrated for 2 µs

in the NPT ensemble at constant pressure 190.4 ⇥ 109 mN/m2
using a Berendsen barostat

in the vertical direction. The equilibration was followed by a 6 µs-long NVT simulation

during the last 4 µs of which membrane properties were averaged over 80 simulation frames.

Supplementary Table S6 lists the LD parameters for the resulting LDs shown in Fig. 4a with

different cytosolic angles ✓c.

S9. Size-dependent LD-tension

Figure 2c shows ER and LD-tensions as a function of ✓ for an LD of size D = 29.5 nm. To

estimate finite size effect on the LD-tensions, we repeated the same calculations for a smaller

LDs of size D = 20.3 nm and 27.7 nm. Although LD-tensions inside spherical LDs seem to

be smaller for the larger LD, see supplementary Fig. S5, their values are within the errorbars

of one another. Therefore, we simulated more LDs with different sizes, four of which were

used to explore size-dependent behavior of LD-tensions as shown in Fig. 6a. Supplementary

Table S7 lists LD parameters for these four LDs which spontaneously formed from initial

slabs.
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Supplementary Figures
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Figure S1: Coarse-grained membrane and neutral lipids with their densities: (a) A lipid

bilayer with the corresponding density profiles of lipid heads, lipid tails, and water beads.

The distance between the peaks of the lipid heads density defines the bilayer thickness lb.
Also shown is the structure of a lipid with its head H and tail T beads. (b) The density

profiles of lipid tails and heads, and water for a slab of size D = 24.2 nm. As expected water

has a density of 3/d3 = 5.86/nm3
. Also shown is an oil molecule with its oil beads O.
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used to compute bending stiffness and membrane thickness of LD-monolayers with boxes

of height 2h = 20 nm and width 13 nm for calculating stress profiles as shown in (b) for

three slabs. (c) Small flat bilayers with boxes of height 2h = 10 nm and width 13 nm for

calculating stress profiles in bilayers as shown in (d) for two bilayers. (e) Monolayer and

bilayer tensions, ⌃m and ⌃b, plotted against Alp with red and blue dots. The dashed lines,

fitted to the data, were used to calculate membrane stiffness.
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D = 26.3 nm
Alp = 0.68 nm2
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D = 28 nm
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Figure S3: Multi-spherical LDs: In addition to single spherical LDs, multi-spherical LDs

of smaller sizes form for sufficiently small area-per-lipids of initial slabs. Green and orange

dots represent oil and lipid molecules, respectively. The bottom snapshots of the middle and

right panels show the lateral cross sections of double LD structures.
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Figure S4: Stress calculation boxes: Boxes of width 5 and 8 nm and height 48 nm used to

compute LD and ER-tensions, ⌃m and ⌃b, and their areas-per-lipid.
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Supplementary Tables

Table S1: DPD Interaction force parameters fij [kBT/d]

j = W j = H j = T j = O
i = W 25 30 75 75
i = H 30 30 50 50
i = T 75 50 10 11
i = O 75 50 11 10

The interaction force parameter fij between oil O, water W , lipid head H, and lipid tail T
beads.

Table S2: Properties of small slabs and flat bilayers

Nlip Am
l , Ab

l [nm
2] ⌃m [mN/m] ⌃b [mN/m]

1800 0.72 0.4± 0.6 �
1700 0.77 4.6± 0.3 �1.8± 0.5
1600 0.82 10.5± 0.2 8.7± 0.2
1500 0.87 15.5± 0.2 20.3± 0.3
1400 0.93 19.9± 0.2 32.4± 0.3

Areas-per-lipid and tensions of flat bilayers and small slabs of size D = 24.2 nm (⌃b and

⌃m respectively) used to find the bending stiffness and membrane thickness of the

ER-bilayer and LD-monolayers. All slabs contain the oil volume V = 4264.6 nm3
with slab

area As = 655.4 nm2
and minimum slab area Asm = 1115.3 nm2

. The monolayer thickness

is lm = 2.04 nm.
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Table S3: Properties of initial slabs used for identifying relevant LD parameters

Noil D [nm] V [nm3] Nlip Alp [nm2] Asm [nm2]

21000 29.5 8601.6

6800
6400
6000
5600

0.68
0.72
0.77
0.822

2987.5

24881 31 10192
7200
6428
5625

0.64
0.716
0.819

3058.8

31500 33.2 10902.4
6800
6400
6000

0.68
0.72
0.77

3169.7

Properties of slabs with different sizes used for spontaneous formation of LDs and

identifying LD parameters. The data corresponds to slabs the resulting LDs of which are

shown in Figure 1c. The slab area is As = 2304 nm2
and the monolayer thickness is

lm = 2.04 nm for all slabs.

Table S4: Properties of symmetrical LD lenses with size D = 29.5 nm

L [nm] R [nm] ✓ [�] ⌃b [mN/m] ⌃m [mN/m] � [pN ] � [109 mN/m2]
47.2 14.2± 0.3 86.3± 0.1 0.3± 0.3 4.1± 0.5 10± 4.4 �0.615
48 15.9± 0.3 75.7± 0.07 1.3± 0.4 4.8± 0.5 �3.4± 7.2 �0.641
48.8 18± 0.4 67± 0.04 3.2± 0.5 5.6± 0.2 �8.4± 8.7 �0.659
49.6 21.9± 0.3 55.6± 0.03 5.5± 0.5 7.1± 0.3 �36.1± 10.9 �0.68
50.4 23.3± 0.3 52.7± 0.03 8.5± 0.2 9.1± 0.5 �38.2± 11.8 �0.811
51.2 25.2± 0.3 49.2± 0.03 11.3± 0.5 10.8± 0.4 �45.7± 13.8 �0.885
52 27± 0.5 46.4± 0.03 15.5± 0.1 11.7± 0.4 �31.1± 21 �0.892

Properties of LD lenses obtained by increasing the width L of the simulation box of an

almost spherical LD of size D = 29.5 nm with smallest box width L = 47.2 nm.

Table S5: Properties of symmetrical LD lenses with size D = 27.7 nm

L [nm] R [nm] ✓ [�] ⌃b [mN/m] ⌃m [mN/m] � [pN ] � [109 mN/m2]
48 14.1± 0.4 79.7± 0.1 0.27± 0.15 4.2± 0.5 �2.8± 3.3 �0.901
48.8 15.9± 0.3 70.1± 0.06 1.5± 0.2 5.2± 0.3 �17.2± 4.3 �0.702
49.6 18.8± 0.6 59.9± 0.04 3.8± 0.4 6.3± 0.5 �30.3± 10.6 �0.713
50.4 21.8± 0.5 52.4± 0.04 6.8± 0.3 7.7± 0.4 �35.9± 10 �0.744
51.2 26.5± 0.7 44.4± 0.03 10.1± 0.3 8.7± 0.3 �36.6± 9.8 �0.687
52 27.5± 0.4 43± 0.03 13.8± 0.2 11.6± 0.4 �52.9± 11.6 �0.873

Properties of LD lenses obtained by increasing the width L of the simulation box of an

almost spherical LD of size D = 27.7 nm with the smallest box width L = 48 nm.
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Table S6: Properties of asymmetric LDs budding to the cytosol

Ncm

Nlm
✓c [�] ⌃b [mN/m]

⌃cm [mN/m]
⌃lm [mN/m]

�

7000
7000

91.6± 1 0.073± 0.16
3.85± 0.39
4.8± 0.7

0

7150
6850

101.3± 3.3 �0.19± 0.23
4.7± 1.1
4± 1.1

0.021

7300
6700

108.9± 2.4 0.05± 0.34
4.7± 0.4
4.9± 0.7

0.043

7450
6550

115.8± 1.3 �0.21± 0.24
3.9± 0.6
4.6± 0.6

0.064

7600
6400

126.4± 3.3 �0.075± 0.26
4.3± 1
4.2± 1.2

0.086

7750
6250

133.3± 2.6 �0.033± 0.25
4.3± 0.9
4.1± 1

0.107

7900
6100

142.4± 2.3 �0.018± 0.27
4.7± 0.7
3.9± 0.6

0.129

8050
5950

148.4± 1.9 0.037± 0.2
4.1± 1
5.1± 0.5

0.15

8200
5800

163.4± 2.4 �0.064± 0.22
4.3± 0.6
4.3± 0.8

0.171

Properties of spherical LDs obtained by exchanging lipids from the luminal to the cytosolic

monolayer of an initial spherical LD of size D = 29.5 nm in a fixed simulation box of width

L = 72 nm. The initial spherical LD emerges into a completely budded LD attached to the

ER upon exchanging lipids at a fixed total number of lipids Nlip = 14000. Ncm and Nlm

denote number of lipids in the cytosolic and luminal leaflets of the LD-monolayers and the

ER bilayer. LD angles are calculated based on the LD budding model (Fig. 5b) with

✓l = 180� ✓c.

Table S7: Properties of almost spherical LDs with different sizes

Noil D [nm] Nlip Alp [nm2]
5500 20.3 6400 0.76
16800 27.7 6800 0.68
21000 29.5 6960 0.66
31500 33.2 7200 0.64

Projected areas-per-lipid Alp for three nearly-spherical LDs of different sizes.
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