## **Supporting Information**

## Elucidating the influence of electrostatic force on the rearrangement of H-bonds of protein polymer in the presence

## of salts

Tithi Basu,<sup>#</sup> Sougat Das,<sup>#</sup> Saptarshi Majumdar<sup>\*</sup> Department of Chemical Engineering Indian Institute of Technology Hyderabad Telangana, 502285 India <sup>#</sup>Authors contributed equally \*Corresponding author E-mail: <u>saptarshi@che.iith.ac.in</u>

## Section S1. OPLS-AA forcefield parameters

The OPLS-AA forcefield parameters are: force constants k, equilibrium bond  $r_o$  and equilibrium angle  $\theta_o$ , the Fourier coefficients V, the partial charges on each atom q, and the Lennard–Jones radii and well depths,  $\sigma$  and  $\varepsilon$ . The geometric combining rules utilized for the Lennard–Jones coefficients are:  $\sigma_{ij} = (\sigma_{ii}\sigma_{jj})^{1/2}$  and  $\varepsilon_{ij} = (\varepsilon_{ii}\varepsilon_{jj})^{1/2}$ .<sup>10</sup> To retain compatibility, all the parameters were used without any modifications.

$$E_{bonds} = \sum_{i} k_{b,i} (r_i - r_{o,i})^2$$
(1)

$$E_{angles} = \sum_{i} k_{b,i} (\theta_i - \theta_{o,i})^2$$

$$E_{torsion} = \sum_{i} \begin{bmatrix} \frac{1}{2} V_{1,i} (1 + \cos \varphi_i) + \frac{1}{2} V_{2,i} (1 + \cos 2\varphi_i) \\ + \frac{1}{2} V_{3,i} (1 + \cos 3\varphi_i) + \frac{1}{2} V_{4,i} (1 + \cos 4\varphi_i) \end{bmatrix}$$
(3)

(2)

$$E_{nonbond} = \sum_{i} \sum_{j>i} \left\{ \frac{q_i q_j e^2}{r_{ij}} + 4\varepsilon_{ij} \left[ \left( \frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left( \frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] \right\}$$
(4)

All the other parameters like, partial charges on each atoms, sigma, epsilon, angle, dihedral, and improper coefficients were taken from the original OPLS-AA forcefield parameter files present in the Gromacs directory.

| Type of anions | Anions                              | Hydration Radius: R <sub>H</sub> of anions (* 10 <sup>-10</sup> m) |
|----------------|-------------------------------------|--------------------------------------------------------------------|
| Kosmotropes    | $SO_{4}^{2-}$                       | 2.57                                                               |
|                | CH <sub>3</sub> COO <sup>-</sup>    | 2.50                                                               |
| Chaotropes     | Cl <sup>-</sup>                     | 1.58                                                               |
|                | <i>NO</i> <sup>-</sup> <sub>3</sub> | 1.43                                                               |

**Table T1**: Hydration radius of kosmotropes and chaotropes.

**Table T2**: Values of  $R_g$  at pH 7 from MD simulations. The  $R_g$  for kosmotropes is slightly lower than the chaotropes due to the higher hydration radius of kosmotropes.

| Pure Gelatin | Salt Conc (%) | Na <sub>2</sub> SO <sub>4</sub> | CH <sub>3</sub> COONa | NaCl | NaNO <sub>3</sub> |
|--------------|---------------|---------------------------------|-----------------------|------|-------------------|
| 1.79         | 0.25          | 1.78                            | 1.79                  | 1.80 | 1.81              |
|              | 1             | 1.77                            | 1.78                  | 1.81 | 1.82              |
|              | 2             | 1.8                             | 1.81                  | 1.89 | 1.84              |



**Fig S1:** ATR/FTIR amide II bands of gelatin Type A with kosmotropes and chaotropes for (a) 0.25% salt concentration, (b) 1% salt concentration, and (c) 2% salt concentration. ATR/FTIR amide II bands of gelatin Type B with kosmotropes and chaotropes for (d) 0.25% salt concentration, (e) 1% salt concentration, and (f) 2% salt concentration. The chaotropes show a shift in the amide II band at 1% and 2% salt concentration as they are able to interact with gelatin.

| Pure Gelatin | Salt Conc (%) | Na <sub>2</sub> SO <sub>4</sub> | CH <sub>3</sub> COONa | NaCl | NaNO <sub>3</sub> |
|--------------|---------------|---------------------------------|-----------------------|------|-------------------|
| 2.26         | 0.25          | 2.19                            | 2.17                  | 2.12 | 2.13              |
|              | 1             | 2.07                            | 2.03                  | 1.98 | 1.97              |
|              | 2             | 1.98                            | 1.97                  | 1.9  | 1.92              |

Table T3: Values of R<sub>g</sub> at pH 3 from MD simulations.



**Fig. S2:** Secondary structures of Gelatin (Type B) with different salts: 0.25%, 1%, and 2% salt concentrations at pH 5 (IEP). Not much change was observed for 0.25% salt. Kosmotropes:  $\alpha$ -helix increases at 1% salt due to the collapse of chains and breaks at 2% salt due to screening of electrostatic attractions. Chaotropes:  $\alpha$ -helix breaks into random structures.



Fig. S3: Secondary structures of Gelatin (Type B) with different salts: 0.25%, 1%, and 2% salt concentrations at pH 3. At 1% and 2% salt  $\beta$ -sheets and random structure increases. Chaotropes interact more thus the chains are collapsed, which increases  $\beta$ -sheets compared to kosmotropes.



**Fig. S4:** Secondary structures of Bovine Serum Albumin (BSA) with different salts: 0.25%, 1%, and 2% salt concentrations at pH 4.7 (IEP). At 1% and 2% salt  $\alpha$ -helix breaks to form  $\beta$ -sheets. Chaotropes interact more thus increasing  $\beta$ -sheets compared to kosmotropes.



Fig. S5: Secondary structures of Bovine Serum Albumin (BSA) with different salts: 0.25%, 1%, and 2% salt concentrations at pH 3. Not much change was observed for 0.25% salt. Kosmotropes:  $\alpha$ -helix breaks to form  $\beta$ -sheets. Chaotropes:  $\alpha$ -helix breaks into random structures.

| Sample                 | β- sheet (%) | Random (%) | α- helix (%) | β - turn (%) |
|------------------------|--------------|------------|--------------|--------------|
| Gelatin                | 59.46        | 12.28      | 19.38        | 8.88         |
| Gelatin & salt @1 min  | 66.61        | 28.33      | -            | 5.05         |
| Gelatin & salt @6 min  | -            | 86.123     | -            | 13.87        |
| Gelatin & salt @11 min | 8.14         | 75.45      | -            | 16.40        |
| Gelatin & salt @16 min | 66.34        | 23.97      | -            | 9.69         |
| Gelatin & salt @21 min | 68.31        | 24.01      | -            | 7.68         |
| Gelatin & salt @26 min | 66.47        | 25.63      | -            | 7.9          |

 Table T4: Variation in gelatin secondary structure with time (Gelatin Type A with 2% NaCl).