*

Supporting information

Porous superabsorbent composites prepared from aqueous foam templates and application evaluation

Yan Liu^{a, b}, Fangzhi Duan^a, Yongfeng Zhu^{a*}, Li Zong^a, Xincun Wang^b, Aiqin Wang^a,

^a Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Ecomaterial and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P.R. China

^b Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education, Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, PR China

^{*} Corresponding authors: aqwang@licp.cas.cn (A.Q. Wang). Tel.: +86 931 4968118,
Fax: +86 931 4968019; zhuyf@licp.cas.cn (Y.F. Zhu). Tel.: +86 931 4968120.

Fig. S1 Optical microscope pictures of foam stabilized by 3 % COSSC and different concentrations of SMP (a) 0.3 wt.%, (b) 0.5 wt.%, (c) 0.7 wt.%, (d) 0.9 wt.%.

AMPS)/SMP/COSSC (0 - 7%).

The chemical composition and structure of porous superabsorbent were further revealed by FTIR analysis. As can be seen from Fig. S2, the characteristic absorption peaks such as -OH group (3434 cm⁻¹), stretching vibration peak of -CH₂ (2989 cm⁻¹), the symmetric and antisymmetric vibration peaks of -COO⁻ (1640 cm⁻¹) in CS FTIR spectrum Fig. S2a. The absorption peak at 1570 cm⁻¹ after polymerization is attributed to -COO- of PAA, and the absorption peak at 1260 cm^{-1} is attributed to the bending and stretching vibrations of C-N, indicating that CS-g-PAA has been successfully formed. After adding AMPS, we found that the absorption peaks located at 1658 cm⁻¹, 1553 cm⁻¹ and 1218 cm⁻¹ are the characteristic absorption peaks of C=O stretching, N-H bending and S=O stretching 1,2 , which can further indicate that AMPS participates in the polymerization reaction. For the COSSC added samples (CS-g-P(AA-co-AMPS)/SMF/COSSC), a significant decrease in the absorption peaks of Si-OH and Si-O-Si at 1048 and 468 cm⁻¹ was clearly observed. It may be that Si-OH in COSSC can form hydrogen bonds with hydrophilic groups (-COOH, NH₂, -SO₃, etc) in the polymerization system Fig. S2b. The above FTIR experimental data provide clear evidence for the graft copolymerization of AA and AMPS on chitosan chains.

Fig. S3 SEM images of CS-*g*-P(AA-co-AMPS)/SMP (a, b) and CS-*g*-P(AA-co-AMPS)/SMF/COSSC by conventional redox polymerization (without foaming) (d, c).

Fig. S4 Fitting curves in distilled water (a), 0.9 wt.% NaCl solution (b), and in tap water (c), Other test conditions are as follows: (m _{sample} = 0.05 g; VH2O, 400 mL; pH = 7; Time = 4 h).

Fig. S5 Digital photographs of cabbage seeds with different CS-*g*-P(AA-co-AMPS)/SMP/COSSC (a); Soil aridity under, soil pH and soil conductivity under different CS-*g*-P(AA-co-AMPS)/SMP/COSSC additions (b), (c) and (d).

Table S1 Swelling kinetic parameters of CS-g-P(AA-co-AMPS)/SMP/COSSC indistilled water, 0.9 wt.% NaCl solution and in tap water.

	In distilled water		In 0.9 wt.% NaCl		In tap water	
Sample	$q_{ m cal}({ m g}\!/{ m g})$	$K_1 \times 10^{-1}$	$q_{ m cal}\left({ m g}/{ m g} ight)$	$K_1 \times 10^{-1}$	$q_{ m cal}({ m g}/{ m g})$	$K_l \times 10^{-1}$
		³ (g/g·min)		³ (g/g·min)		³ (g/g·min)
No forming	363.636	1.189	64.102	4.876	198.019	1.817
Pickering foam template	657.894	2.901	72.886	19.88	205.338	14.550

Sample	In distilled water		In 0.9 wt.% NaCl		In tap water	
	Intercept <i>lnk</i>	slope n	Intercept <i>lnk</i>	slope <i>n</i>	Intercept <i>lnk</i>	slope <i>n</i>
No forming	4.481	0.117	2.372	0.105	2.803	0.0764
Pickering foam template	5.035	0.061	0.097	2.505	2.634	0.0626

Table S2 Diffusion parameters of CS-g-P(AA-co-AMPS)/SMP/COSSC in distilledwater, 0.9 wt.% NaCl solution and in tap water.

Table S3 Germination of cabbage at different CS-g-P(AA-co-AMPS)/SMP/COSSC

additions.

CS-g-P(AA-co-	Germination rate			
AMPS)/SMP/COSSC	3 Day	5 Day		
0 wt.%	68.71%	89.71%		
0.5 wt.%	68.28%	89.92%		
1.0 wt.%	72.00%	91.07%		
1.5 wt.%	71.42%	92.85%		

Table S4 Chlorophyll content (mg/g fresh leaves) in cabbage seed.

Samples	Chlorophyll a	Chlorophyll b	Chlorophyll a + b	
Control	21.0789	11.7391	32.8080	
0.5 wt.%	21.1950	12.6337	33.8287	
1 wt.%	22.0922	12.5085	34.6007	
1.5 wt.%	23.000	12.8311	35.8311	

Reference:

- 1 Y. Bao, J. Ma and N. Li, Carbohydr. Polym. 2011, 84 (1), 76-82.
- 2 Y. Guo, R. Guo, X. Shi, S. Lian, Q. Zhou, Y. Chen, W. Liu and W. Li, *Int. J. Biol. Macromol.* 2022, **209** (Pt A), 1169-1178.