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20 Supplementary Text

21 Agent-based model (ABM)

22 Our agent-based model is built on the previous models developed by Beroz et al. (1) and others (2, 

23 3), and has successfully applied to the differential growth and self-patterning problem of V. 

24 cholorae biofilms (4). As shown in Fig. S1, cells in the biofilm are modeled as elongating and 

25 dividing spherocylindrical agents and the surrounding hydrogel is modeled as a collection of 

26 spherical agents. We adopt the Hertzian and JKR contact models to address the nonlinear elastic 

27 deformation and the interfacial adhesions in the biofilm-hydrogel system. The details of agent 

28 particle geometries, interactions, governing equations, and parameter settings are introduced 

29 below.

30

31 Single cell geometry

32 For simplicity, we assume that a single spherocylinder represents the space occupied by the 

33 combination of a single cell and its surrounding extracellular matrix. The shape of spherocylinders 
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34 can be determined by their length  and radius , with the volume . For a single 𝐿 𝑅
𝑉 =

4
3

𝜋𝑅3 + 𝜋𝑅2𝐿

35 cell, we assume the growing speed of cell length  is a constant, and the radius  keeps the same, 

𝑑𝐿
𝑑𝑡 𝑅

36 leading to an exponential volume growth law . To introduce randomness into the model, 

𝑑𝑉
𝑑𝑡

= 𝛾𝑉

37 we assume the growth rate  follows the normal distribution , where  is the 𝛾 𝛾 ∼ 𝑁(𝛾0, 0.2𝛾0) 𝛾0

38 average growth rate calibrated from experiments. In simulations, the continuous exponential 

39 growth is implemented as a sequence of discrete length increments of , where 
Δ𝐿 = 𝛾(4

3
𝑅 + 𝐿)Δ𝑡

40  is the length of timesteps.Δ𝑡

41

42 We model the cell division as the following: when the length of a mother cell reaches the division 

43 length , it is instantaneously replaced by two equal-sized daughter cells with the initial length 𝐿𝑚𝑎𝑥

44 . As shown in Fig. S1,  is determined by the criteria where two daughter cells 
𝐿0 =

𝐿𝑚𝑎𝑥

2
‒ 𝑅 𝐿0

45 have the same total head-to-tail length ( )  as the mother cell. Then it follows, for a cell with 𝐿 + 2𝑅

46 the initial length  and the growth rate , the cellular doubling time is 𝐿0 𝛾

47 . In simulations, the division is implemented as the following: in a 
𝑡𝑑𝑜𝑢𝑏𝑙𝑒 =

1
𝛾

log (10𝑅 + 6𝐿0

4𝑅 + 3𝐿0
)

48 single timestep, if the length of a mother cell reaches , the length of this cell is altered to , 𝐿𝑚𝑎𝑥 𝐿0

49 as the first daughter cell. The second daughter cell is generated by directly copying the first, then 

50 their center positions are changed so that they occupy the same head-to-tail position as the mother 

51 cell without overlapping.

52

53 It should be noted that, we use a hard-core, soft-shell model to capture the mechanical properties 

54 of the cell-matrix composite. We assume the spherocylindrical region of a single cell can be 

55 divided into two regions with different contact stiffnesses . The outer region represents the soft 𝐸

56 extracellular matrix ( ) (5), and the inner region represents the rigid bacteria cell (𝐸𝑚𝑎𝑡 ∼ 300 𝑃𝑎

57 ) (6). We denote the radius of the rigid cell (inner region) by  to differentiate it 𝐸𝑐𝑒𝑙𝑙 ∼ 50 𝑘𝑃𝑎 𝑅𝑐



58 with the radius of cell-matrix composite , and all the word “cell” represents “cell-matrix 𝑅

59 composite” in the following descriptions, unless any special declaration.

60

61 Cell-cell repulsion

62 For cell-cell interactions, we neglect any adhesion and friction between cells, but only consider 

63 their elastic contact. We apply the linear elastic Hertzian contact theory (7) to quantify the 

64 repulsive contact forces on cell  by cell , written as𝑖 𝑗

𝐹𝑐𝑒𝑙𝑙 ‒ 𝑐𝑒𝑙𝑙,𝑖𝑗 = { ‒
5
2

𝐸0𝑅1/2𝛿3/2
𝑖𝑗 �̂�𝑖𝑗,𝛿𝑖𝑗 < 𝑅 ‒ 𝑅𝑐

‒
5
2

(𝐸0𝑅1/2(𝑅 ‒ 𝑅𝑐)3/2 + 𝐸𝑐𝑅1/2(𝛿𝑖𝑗 ‒ 𝑅 + 𝑅𝑐)3/2)�̂�𝑖𝑗,𝛿𝑖𝑗 > 𝑅 ‒ 𝑅𝑐�, (1)

65

66 where  and  denote the effective contact stiffnesses of the extracellular matrix and rigid cells 𝐸0 𝐸𝑐

67 respectively,  is the radius of the center rigid cell,  is the overlapping distance, and  denotes 𝑅𝑐 𝛿𝑖𝑗 �̂�𝑖𝑗

68 the unit vector normalized from the distance vector , defined as the smallest distance between 𝑑

69 two cell centerlines. The overlapping distance  is given by . Note that, we 𝛿𝑖𝑗 𝛿𝑖𝑗 = 2𝑅 ‒ |𝑑|

70 generalize all the contact forces (including point-point contact and line contact) by the scaling 

71 relation , to avoid the computational step to decide if two cylinders are perfectly 
𝐹~

5
2

𝐸0𝑅1/2𝛿3/2

72 parallel with each other. Strictly, for the perfectly parallel contact case, the scaling of the contact 

73 forces should have been , where  is the contact length. We validate this simplification 
𝐹~

𝜋
4

𝐸0𝑚𝛿
𝑚

74 by comparing the above two scaling relations (Fig. S3A), where we set the contact length 

75  (the average cell length) and the contact radius  (the cell radius in our 𝑚 = 1.6 𝜇𝑚 𝑅 = 0.8 𝜇𝑚

76 model), and the difference of contact forces is negligible. We also show that the above 

77 simplification has trivial effects on cell alignment and stress distributions. As shown in Fig. S3B, 

78 we compare two biofilms under different treatments of the cell-cell contact (the left is the 

79 simplified contact model used throughout our work, and the right is the modified version by 

80 considering the perfect parallel contact), and find that the spreading radius of biofilm, the cell 

81 alignments, and the onset threshold of verticalization are nearly identical between two simulations. 

82 Furthermore, we compare the spatiotemporal evolution of the hydrostatic pressure and the 

83 equivalent shear stress between the simplified and the modified contact model (Fig. S3C). The 



84 modified contact interaction does not significantly alter the time evolution of average stresses, 

85 stress spatial distribution, and the cell orientational order. 

86

87 Correspondingly, the moment of contact force  about cell center is given by𝐹𝑐𝑒𝑙𝑙 ‒ 𝑐𝑒𝑙𝑙,𝑖𝑗

88

𝑀𝑐𝑒𝑙𝑙 ‒ 𝑐𝑒𝑙𝑙,𝑖𝑗 = 𝑠𝑟�̂�𝑖 × 𝐹𝑐𝑒𝑙𝑙 ‒ 𝑐𝑒𝑙𝑙,𝑖𝑗, (2)

89

90 where  is the unit vector denoting cell orientation (from cell center to the contact point) and  �̂�𝑖 𝑠𝑟

91 is the parametric coordinate of the contact point along the center line of the cell.

92

93 Cell-gel interactions

94 On the interface between the biofilm and the surrounding hydrogel, we apply a JKR-type model 

95 to capture the elastic contact and the adhesion between a cell agent  and a coarse-grained gel 𝑖

96 particle . For the elastic contact, we use a similar linear elastic Hertzian contact interaction with 𝑗

97 Eq. (1), written as 

98

𝐹 𝑟𝑒𝑝
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗 = { ‒

5
2

𝐸0𝑅𝑒𝑞
1/2𝛿3/2

𝑖𝑗 �̂�𝑖𝑗,𝛿𝑖𝑗 < 𝑅 ‒ 𝑅𝑐

‒
5
2

(𝐸0𝑅𝑒𝑞
1/2(𝑅 ‒ 𝑅𝑐)3/2 + 𝐸𝑐𝑅𝑒𝑞

1/2(𝛿𝑖𝑗 ‒ 𝑅 + 𝑅𝑐)3/2)�̂�𝑖𝑗,𝛿𝑖𝑗 > 𝑅 ‒ 𝑅𝑐

, � (3)

99

100 where  is the equivalent radius of contact,  is the radius of coarse-grained gel 
𝑅𝑒𝑞 =

2𝑅𝑔𝑒𝑙𝑅

𝑅 + 𝑅𝑔𝑒𝑙 𝑅𝑔𝑒𝑙

101 particles, and the overlapping distance  is determined by a similar method 𝛿𝑖𝑗 = 𝑅 + 𝑅𝑔𝑒𝑙 ‒ |𝑑|

102 considering the minimal distance between the center of the gel particle to the cell center line. 

103

104 We assume cell-gel adhesion forces are proportional to , which is the energy release per 𝛾𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙

105 unit area given by , the surface energy of cell and gel minus the 𝛾𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙 = 𝛾𝑐𝑒𝑙𝑙 + 𝛾𝑔𝑒𝑙 ‒ 𝛾 ∗

106 interfacial energy . Naturally, cell-gel adhesion forces are also proportional to the contact area, 𝛾 ∗

107 which gives



𝐹 𝑎𝑑ℎ
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗 = 𝜋𝑎2𝛾𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙�̂�𝑖𝑗, (4)

108 where  is the equivalent radius of contact area, given by the simplified geometric relation 𝑎

109 . For simplicity, our model neglects the cohesion-decohesion asymmetric behavior in 𝑎 = 𝛿𝑖𝑗𝑅𝑒𝑞

110 the original JKR model, as the decohesion behavior rarely happens on the continuously expanding 

111 biofilm-gel interface.

112

113 Similarly, the moment about the cell center, for the repulsive cell-gel contact force  and 𝐹 𝑟𝑒𝑝
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗

114 the cell-gel adhesion , can be given by 𝐹 𝑎𝑑ℎ
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗

115

𝑀 𝑟𝑒𝑝
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗 = 𝑠𝑟�̂�𝑖 × 𝐹 𝑟𝑒𝑝

𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗, (5)

116

117 and 

𝑀 𝑎𝑑ℎ
𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗 = 𝑠𝑟�̂�𝑖 × 𝐹 𝑎𝑑ℎ

𝑐𝑒𝑙𝑙 ‒ 𝑔𝑒𝑙,𝑖𝑗. (6)

118

119 Gel-gel interactions

120 We treat the surrounding agarose gel as a soft viscoelastic material, using the coarse-grained 

121 modeling approach to address its mechanical behavior. The basic elements of the coarse-grained 

122 model are spherical particles of radius  with harmonic interactions. We set the pairwise 𝑅𝑔𝑒𝑙

123 interaction energy between the gel particles as  ,with the cut-off radius 
𝐸𝑔𝑒𝑙,2 = Σ𝑖𝑗

𝑘𝑟

2
(𝜉𝑖𝑗 ‒ 𝜉0)2

124 , where  is the distance between particle  and ,  is the equilibrium distance, and  is 𝑅 𝑐
𝑔𝑒𝑙,2 𝜉𝑖𝑗 𝑖 𝑗 𝜉0 𝑘𝑟

125 the spring constant. To capture the gel shear modulus, we also introduce a three-body interaction 

126 energy where , with the cut-off radius , where  is the bond angle 
𝐸𝑔𝑒𝑙,3 = Σ𝑖𝑗𝑘

𝑘𝜁

2
(𝜁𝑖𝑗𝑘 ‒ 𝜁0)2

𝑅 𝑐
𝑔𝑒𝑙,3 𝜁𝑖𝑗𝑘

127 formed by particle , , and . We also considered the normalized Stokes viscosity of gel particles 𝑖 𝑗 𝑘

128 to address the viscoelasticity behavior also stabilize the gel system, given by , 𝐹𝑠𝑡𝑜𝑘𝑒𝑠,𝑖 =‒ 𝜂𝑔𝑒𝑙𝑢𝑖

129 where  is the normalized viscosity coefficient and  is the velocity vector of the gel particle .𝜂𝑔𝑒𝑙 𝑢𝑖 𝑖

130



131 Cell-to-substrate interactions 

132 Considering the glass substrate in experiments has significantly larger Young’s modulus compared 

133 with cells and gel, we model the substrate as a rigid, two-dimensional infinite plane located at 

134 . Similarly, we apply the linear elastic Hertzian contact model to represent the repulsion 𝑧 = 0

135 between cells and the substrate. On the other hand, we assume the cell-substrate adhesion is related 

136 to the equivalent contact area between cells and the substrate, by the Derjaguin approximation (8).

137

138 For the cell-substrate repulsive contact, we use a generalized Hertzian contact formula to account 

139 for the cell orientation-dependent contact energy. Similar to Eq. (1) and (2), the elastic contact 

140 energy is given by , where  is the equivalent penetration depth which depends 𝐸𝑒𝑙,𝑖 = 𝐸0𝑅1/2𝛿5/2
𝑖 𝛿𝑖

141 on the average penetration depth and the cell-substrate relative angle, given by the explicit formula:

142
143

𝛿5/2
𝑖 =

𝐿/2

∫
‒ 𝐿/2

[𝑅1/2|�̂� ∥ ,𝑖|2𝛿2(𝑠) +
4
3(1 ‒ |�̂� ∥ ,𝑖|2)𝛿3/2(𝑠)]𝑑𝑠, (7)

144
145

146 where  is the normalized projection of the th cell director on the substrate ( ). The overlap �̂� ∥ ,𝑖 𝑖 𝑧 = 0

147 function  denotes the overlapping distance between the cell and the substrate at the local cell-𝛿(𝑠)

148 body coordinate - . Then, the net force  and moment  from the cell-substrate 𝐿/2 ≤ 𝑠 ≤ 𝐿/2 𝐹𝑒𝑙,𝑖 𝑀𝑒𝑙,𝑖

149 elastic repulsion can be given by

150
151

𝐹𝑒𝑙,𝑖 = 2𝐸0𝑅1/2
‒ 𝐿/2

∫
𝐿/2

�̂�[𝑅1/2|�̂� ∥ ,𝑖|2𝛿(𝑠) + (1 ‒ |�̂� ∥ ,𝑖|2)𝛿1/2(𝑠)]𝑑𝑠, (8)

𝑀𝑒𝑙,𝑖 = 2𝐸0𝑅1/2
‒ 𝐿/2

∫
𝐿/2

[𝑠�̂�𝑖 × �̂�][𝑅1/2|�̂� ∥ ,𝑖|2𝛿(𝑠) + (1 ‒ |�̂� ∥ ,𝑖|2)𝛿1/2(𝑠)]𝑑𝑠, (9)

152
153

154 where  is the unit vector perpendicular to the substrate. �̂�

155



156 Similar to Eq. (4), we assume the cell-substrate adhesion energy by the form of , 𝐸𝑎𝑑,𝑖 =‒ Σ0𝐴𝑖

157 where  is the adhesion energy density and  is the equivalent contact area between cell  and Σ0 𝐴𝑖 𝑖

158 the substrate. The equivalent contact area is given by

159
160

𝐴𝑖 =
𝐿/2

∫
‒ 𝐿/2

𝑎(𝑠)𝑑𝑠 =
𝐿/2

∫
‒ 𝐿/2

[𝑅1/2|�̂� ∥ ,𝑖|2𝛿1/2(𝑠) + 𝜋𝑅(1 ‒ |�̂� ∥ ,𝑖|2)𝐻(𝛿(𝑠))]𝑑𝑠, (10)

161
162

163 where  is the Heaviside step function. Thus, the net adhesive force  and moment  𝐻( ⋅ ) 𝐹𝑎𝑑,𝑖 𝑀𝑎𝑑,𝑖

164 are: 
165

𝐹𝑎𝑑,𝑖 =‒ Σ0

𝐿/2

∫
‒ 𝐿/2

�̂�[1
2

𝑅1/2|�̂� ∥ ,𝑖|2𝛿 ‒ 1/2(𝑠)]𝑑𝑠 ‒ �̂�Σ0𝜋𝑅(1 ‒ |�̂� ∥ ,𝑖|2), (11)

𝑀𝑎𝑑,𝑖 =‒ Σ0

𝐿/2

∫
‒ 𝐿/2

[𝑠�̂�𝑖 × �̂�][1
2

𝑅1/2|�̂� ∥ ,𝑖|2𝛿 ‒ 1/2(𝑠)]𝑑𝑠 ‒ [𝑠0�̂� × �̂�]Σ0𝜋𝑅(1 ‒ |�̂� ∥ ,𝑖|2), (12)

166

167 where  denotes the cell-body coordinate such that . Namely, the condition  𝑠0 𝛿(𝑠0) = 0 𝛿(𝑠0) = 0

168 gives the point where a cell detaches from the substrate.

169

170 Viscosity of cells

171 We consider two sources of viscosity of cells: a bulk viscous force due to the friction from 

172 extracellular matrix environment and a surface viscous force due to the substrate. The 

173 environmental viscous force and moment are given by Stokes’ law, 

174

𝐹𝑠𝑡𝑜𝑘𝑒𝑠,𝑖 =‒ 𝜂0𝑢𝑖, (13)

𝑀𝑠𝑡𝑜𝑘𝑒𝑠,𝑖 =‒ 𝜂0

𝐿/2

∫
𝐿/2

𝑠�̂�𝑖 × (𝜔𝑖 × 𝑠�̂�𝑖)𝑑𝑠 =‒
𝜂0

12
𝜔𝑖𝐿

3, (14)

175



176 where  is the normalized environmental viscosity,  is the velocity of the center of mass, and 𝜂0 𝑢𝑖

177  is the angular velocity. The substrate viscous force and moment are taken to be of the form 𝜔𝑖

178

𝐹𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 =‒
𝐿/2

∫
‒ 𝐿/2

𝜂1𝑎(𝑠)

𝑅 [𝑢𝑖(𝑠) ‒ (𝑢𝑖(𝑠) ⋅ �̂�)�̂�] 𝑑𝑠, (15)

𝑀𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 =‒
𝐿/2

∫
‒ 𝐿/2

𝜂1𝑎(𝑠)

𝑅
𝑠�̂�𝑖 × [𝑢𝑖(𝑠) ‒ (𝑢𝑖(𝑠) ⋅ �̂�)�̂�] 𝑑𝑠, (16)

179

180 where  is the viscous coefficient along the substrate. 𝜂1

181

182 Interactions between the gel particles and the substrate  

183 We use two types of interactions to mimic the experimental condition where the gel is adhered to 

184 the substrate. The first type of interaction is gel-substrate elastic contacts. Here we again apply the 

185 linear elastic Hertzian contact theory between a sphere and a flat rigid surface, and the elastic 

186 contact energy is given by , where  is the contact stiffness between 𝐸𝑔𝑒𝑙 ‒ 𝑠𝑢𝑟𝑓𝑎𝑐𝑒,𝑖 = 𝐸1𝑅1/2
𝑔𝑒𝑙𝛿

5/2
𝑖 𝐸1

187 gel particles and the substrate and  is the overlap between the gel particle and the substrate. The 𝛿𝑖

188 second type is the gel-substrate adhesion, serving as the energy barrier for the experimentally 

189 observed delamination on the gel-substrate interfaces. Similarly, we take the adhesion energy as 

190 , where  is the adhesion energy density and the equivalent contact area is 𝐸𝑎𝑑,𝑔𝑒𝑙,𝑖 =‒ Σ1𝐴𝑔𝑒𝑙,𝑖 Σ1

191 given by .𝐴𝑔𝑒𝑙,𝑖 = 𝜋𝑅𝑔𝑒𝑙𝛿𝑖

192

193 Equations of motion 

194 The equations of motion for V. cholorae cells (spherocylinders) are given by Newton’s rigid body 

195 dynamics:

196

( 𝐹𝑛𝑒𝑡,𝑖

𝑀𝑛𝑒𝑡,𝑖
) = [𝑚 0

0 𝐼𝑖](�̇�𝑖

�̇�𝑖
) + ( 0

𝜔𝑖 × 𝐼𝑖𝜔𝑖
), (17)

197



198 where  and  are the total force and moment vector, and  is the moment of inertia. All 𝐹𝑛𝑒𝑡,𝑖 𝑀𝑛𝑒𝑡,𝑖 𝐼

199 the variables are expressed in the body-fixed coordinate system, then transformed into the global 

200 coordinate system. We add a small random noise to the net force and moment vectors of the cells 

201 at every timestep (  for forces and  for moments), to represent the 10 ‒ 7𝐸0𝑅2 10 ‒ 7𝐸0𝑅3

202 environmental fluctuations required for breaking the symmetry.

203

204 For the equations of motion of hydrogel particles (spheres), we neglect the rotational degrees of 

205 freedom of hydrogel agents, because it is not physical to consider the particle spin when modeling 

206 the elastic behavior of hydrogels. Essentially, hydrogel is modeled as a collection of mass points 

207 (with a spherical shape) connected by springs. Therefore, the equations of motion are given by 

208 Newton’s second law , where  is the net force and  is the acceleration. To 𝐹𝑡𝑜𝑡,𝑖 = 𝑚�̇�𝑖 𝐹𝑡𝑜𝑡,𝑖 �̇�𝑖

209 prepare the initial amorphous stress-free geometry, we begin with a body-centered cubic 

210 crystalline geometry with lattice parameter , where . Subsequently, we assigned 𝑎 𝑎 =  1.15 𝑅𝑔𝑒𝑙

211 the system with an initial temperature of  and annealed it (using NVT thermostat) until it 300 𝐾

212 reached a final configuration that is amorphous and stress-free (spatial averaged residual pressure 

213 smaller than 0.01 kPa). 

214

215 Choice of parameters

216 The cell radius  and the division (maximum) length : we set  and 𝑅 𝐿𝑚𝑎𝑥 𝑅 = 0.8 𝜇𝑚

217  to match the experimentally measured mean radius and division length.𝐿𝑚𝑎𝑥 = 3.6 𝜇𝑚

218

219 The hard-core stiffness , hard-core radius , and soft-shell stiffness : we set hard-core 𝐸𝑐 𝑅𝑐 𝐸0

220 stiffness  to match the reported experimental measurement (8 to 47 kPa) (6), while 𝐸𝑐 = 30 𝑘𝑃𝑎

221 the soft-shell stiffness  according to the previous rheology experiments (1). We set 𝐸0 = 300 𝑃𝑎

222 the hard-core radius as .𝑅𝑐 = 0.5 𝜇𝑚

223

224 viscosity coefficients , , : We take , and  to 𝜂0 𝜂1 𝜂𝑔𝑒𝑙 𝜂0 = 2 × 10 ‒ 6 𝑃𝑎 ⋅ 𝑠 ⋅ 𝑚 𝜂1 = 2 × 105  𝑃𝑎 ⋅ 𝑠

225 match the previous rheology experiments. Taken the water viscosity , 𝜇𝑊 = 8.9 × 10 ‒ 4 𝑃𝑎 ⋅ 𝑠



226  is calculated as . Interestingly, we found  and the 𝜂𝑔𝑒𝑙 𝜂𝑔𝑒𝑙 = 6𝜋𝜇𝑊𝑅𝑔𝑒𝑙 ≈ 2 × 10 ‒ 8 𝑃𝑎 ⋅ 𝑠 ⋅ 𝑚 𝜂1

227 gel stiffness jointly control the biofilm morphology, reported in the reference (9).

228

229 The spring constant  and equilibrium length : The Young’s modulus of the agent-based gel 𝑘𝑟 𝜉0

230 system is given by (10) , under the condition . Generally, 
𝑌 =

1
𝑉

∂2(𝐸𝑔𝑒𝑙,2 + 𝐸𝑔𝑒𝑙,3)

∂𝜖2
≃

𝑘𝑟

2𝜉0
 

𝑘𝜁 ≪ 𝑘𝑟

231 a smaller  leads to a denser gel system and better approximation to a continuum solid. Here we 𝜉0

232 choose  as a result of a trade-off between simulation quality and computational cost, 𝜉0 = 0.6 𝜇𝑚

233 as the simulation time is proportional to .  ranges from  to 

1

𝜉0
3 𝑘𝑟 1.2 × 10 ‒ 4 𝑁𝑚 ‒ 1

234  corresponding to the Young’s modulus  to .1.2 × 10 ‒ 1 𝑁𝑚 ‒ 1 𝑌 = 0.1 𝑘𝑃𝑎 𝑌 = 100 𝑘𝑃𝑎

235

236 Radius of agent gel particle : in order to mimic the continuum constraints posed by the 𝑅𝑔𝑒𝑙

237 hydrogel in the experiment,  should be larger than . On the other hand,  cannot be 𝑅𝑔𝑒𝑙 𝜉0 𝑅𝑔𝑒𝑙

238 significantly larger than the cell radius , as this will introduce unphysical contacts at the biofilm-𝑅

239 gel interface. Taking both requirements into consideration, we choose , which is 𝑅𝑔𝑒𝑙 = 1.0 𝜇𝑚

240 nearly double the equilibrium distance  and we keep .𝜉0 = 0.6 𝜇𝑚 𝑅𝑔𝑒𝑙 ≈ 𝑅

241

242 Gel-substrate contact stiffness  and adhesion energy density : we choose  and 𝐸1 Σ1 𝐸1 = 5 𝑘𝑃𝑎

243  for all gel stiffnesses. Σ1 = 5 × 10 ‒ 2 𝑁 ⋅ 𝑚 ‒ 1

244

245

246 Simulation settings and boundary conditions

247 In simulations for both G-I and G-II biofilms, the surrounding hydrogel is modeled as a 

248 homogeneous, isotropic and linear elastic material using the agent-based model elaborated above. 

249 For the G-II biofilm, we set the simulation domain as the cubic box with the size of 2

250 , where the initial geometry is initialized with a single cell lying parallel to 00 × 200 × 120 𝜇𝑚3

251 the substrate without initial velocity and acceleration, surrounded by gel particles filling the entire 



252 simulation domain. A small hemisphere around the seed cell is vacated to avoid initial overlap 

253 between cell and hydrogel particles. For the G-I biofilms, the simulation domain size is 

254  due to the removal of the rigid substrate. Similarly, the initial seed cell is 200 × 200 × 200 𝜇𝑚3

255 placed in the center of the cubic box, with a small spherical region vacated. For both kind of 

256 simulations, we fix a small number of hydrogel particles near the x-y boundaries to provide 

257 anchoring for the elastic deformation of the hydrogel; however, the boundaries are kept sufficiently 

258 far away from the biofilm to minimize any boundary effects.

259  

260 Calculation of the stresses

261 To quantify stress distribution in our complex system containing active growing/dividing bacteria 

262 and passive hydrogels, we define the stress tensor using Virial expression (11), augmented by a 

263 contribution from ambient viscosity. The stress tensor is naturally separated in a contribution from 

264 interactions and a contribution from environmental viscosity, as , with𝜎 = 𝜎𝑖𝑛𝑡 + 𝜎𝑣𝑖𝑠

265

𝜎𝑖𝑛𝑡
𝑖 =

1
𝑉

Σ𝑗𝑟𝑖𝑗 ⊗ 𝐹𝑖𝑗, (18)

266

267 where  is the summation of all particle-particle interactions between particle  and , and  is 𝐹𝑖𝑗 𝑖 𝑗 𝑟𝑖𝑗

268 the distance vector between particle  and , and  is the cell volume. The viscosity part of Virial 𝑖 𝑗 𝑉

269 stress is given by

270

𝜎𝑣𝑖𝑠
𝑖 =

1
𝑉

Σ𝑟𝑖 ⊗ 𝐹𝑖, (19)

271

272 where  is any viscous force such as the ambient viscous force in Eq. (13) and the substrate 𝐹𝑖

273 viscous force in Eq. (15),  is the equivalent acting point of the given viscous force. The 𝑟𝑖

274 summation goes over all types of viscosity, and the definition of  and  can be apply to both 𝜎𝑖𝑛𝑡 𝜎𝑣𝑖𝑠

275 rod-shaped bacteria and sphere-shaped gel particles. Namely, for the translational ambient 

276 viscosity, the contribution to the viscosity stress can be written as , 
𝜎𝑣𝑖𝑠

𝑖 =
1
𝑉

𝐿/2

∫
‒ 𝐿/2

𝑥 ⊗ ( ‒ 𝜂𝑣)𝑑𝑥



277 where  is the velocity vector of the cell center of mass and  is the relative position vector to the 𝑣 𝑥

278 cell center. Similarly, the contribution of rotational ambient viscosity can be given by 

279 , where  is the angular velocity vector.
𝜎𝑣𝑖𝑠

𝑖 =
1

2𝑉

𝐿/2

∫
‒ 𝐿/2

𝑥 ⊗ ( ‒ 𝜔 × 𝑥)𝑑𝑥
𝜔

280

281 Calculation of cell ordering

282 We use the -tensor model of liquid crystals (12) to quantify the local biofilm cell ordering. We 𝑄

283 calculate the per-cell traceless quantity , where  denotes the  cell and  𝑄𝑖 = (3�̂�𝑖 ⊗ �̂�𝑖 ‒ 𝐼)/2 𝑖 𝑖𝑡ℎ 𝐼

284 denotes the identity tensor. Compared with the cell director ,  is head-tail symmetric given by �̂�𝑖 𝑄𝑖

285 . Considering the axisymmetric shape of biofilm, we use discretized bins under 𝑄𝑖(�̂�𝑖) = 𝑄𝑖( ‒ �̂�𝑖)

286 cylindrical coordinates ,  and  and average  in each cylindrical Δ𝑟 = 1𝜇𝑚 Δ𝑧 = 1𝜇𝑚 Δ𝜃 = 𝜋/4 𝑄

287 bins generating the locally averaged order parameter , where  denotes the bin 𝑄(𝑟𝑖,𝜃𝑗,𝑧𝑘) 𝑟𝑖,𝜃𝑗,𝑧𝑘

288 numbered with . The visualization of the azimuthally averaged  is calculated by averaging (𝑖,𝑗,𝑘) 𝑄

289 the azimuthally projected order parameter  over the angle . Finally, we take the scalar 𝑄𝑝 = 𝑅𝑇𝑄𝑅 𝜃

290 order parameter  as the maximum eigenvalue of  and its eigenvector  as the averaged 𝑆 < 𝑄𝑝 > �̂�

291 cell director.

292

293 Similarly, we define the bipolar order parameter  as following. First, we use the coordinates of 𝑆𝑏

294 boundary cells to reconstruct the biofilm-gel interface. Next, for every single outmost cell, we 

295 define the local surface normal . Also, we define the position vector  by calculating the 𝑛𝑛𝑜𝑟𝑚 𝑟𝑖

296 position of each cell  relative to the biofilm center. The bipolar order parameter  is defined as 𝑖 𝑆𝑏

297 , where  and  are the normalized projection vector of  and  onto 𝑆𝑏 = 1/2(3|𝑛𝑖
' ⋅ 𝑟𝑖

'| ‒ 1) 𝑛𝑖
' 𝑟𝑖

' 𝑛𝑖 𝑟𝑖

298 the local tangent plane defined by , respectively.  is averaged over three outmost layers of 𝑛𝑛𝑜𝑟𝑚 𝑆𝑏

299 cells to reduce randomness.

300

301 Biofilm growth dynamics and morphology from ABM

302 As shown in Fig. S2, our model is able to reproduce the growth dynamics of G-II biofilm from the 

303 early stage to the mature state: Starting with a single cell lying on the glass surface, cells first 



304 proliferate and form an 2D layer. When the local in-plane pressure accumulates and reaches the 

305 threshold for verticalization instability (4), cells tend to be vertical then release part of the growth 

306 pressure, and this process generates the initial out-of-plane growth for the transition from 2D 

307 expansion to 3D growth of a biofilm. Biofilms deform the surrounding gel during its expansion, 

308 resulting different level of growth-induced stress which depends on the biofilm volume and gel 

309 stiffness. The stiffness-dependent morphology change is also quantitively captured by our agent-

310 based model. We tune the Young’s modulus of surrounding gel from  to  and find a 101 104 𝑃𝑎

311 sharp transition in biofilm shape around , quantitively reproducing the 𝐸𝑔𝑒𝑙 = 102 𝑃𝑎

312 experimentally observed domes-to-lenses shape transition. More detailed phase diagram of contact 

313 angle about Young’s modulus of gel and the biofilm-substrate friction can be also found in the 

314 reference (13).

315

316 G-II biofilm simulations

317 We have shown the spatiotemporal evolution of hydrostatic pressure, equivalent shear stress, 

318 density and rotational speed in the G-I biofilms. Here for completeness and further verification of 

319 our hypothesis, the same physical quantities are visualized in Fig. S5 and Fig. S6. As shown in 

320 Fig. S5, the spatial distribution of stresses shares similar characteristics with the G-I biofilm. 

321 Specifically, the pressure and shear stress follow the same trends from the inner region of G-II 

322 biofilm to the outer region. Near the center, the pressure is the highest and the equivalent shear 

323 stress is relatively low, and near the biofilm-gel interface, the pressure goes down, but the 

324 equivalent shear stress reaches its maximum. Since G-II biofilm has same experimental settings 

325 except the existence of the rigid glass substrate, the similarity between the pressure and shear stress 

326 distribution of G-I and G-II biofilms can be explained by regarding the glass substrate as a plane 

327 of symmetry to the first order. However, the existence of the rigid substrate slightly changes the 

328 first principal stress direction of the bottom layer of G-II biofilm, from randomly oriented in x-y 

329 plane to mostly in z direction, due to cell verticalization (14-16).

330

331 Effects of cell stiffness

332 As a computational exploration for investigating the effects of cell behaviors to the spatiotemporal 

333 evolution of cell ordering, we alter the soft-shell cell stiffness  from relatively soft (~100 Pa) to 𝐸0



334 relatively rigid (~5000 Pa) and keep other simulation setting unchanged. Previous study (17) has 

335 shown the cell stiffness is related to the average size of local aligned group. For the G-I biofilm, 

336 we define the bipolarly aligned boundary layer using the following method: Based on the 

337 reconstructed biofilm-gel interface, we define a series of self-similar ellipsoid surfaces by the 

338 interval of long-axis , as the possible inner surface of the boundary layer. Then we Δ𝐿 = 0.2𝜇𝑚

339 increase the thickness by the increment  and calculate the averaged bipolar order parameter  Δ𝐿 𝑆𝑏

340 for all cells between the biofilm-gel interface and the given inner surface. The region where 

341  is regarded as the bipolar boundary layer, and its thickness is defined as the length 𝑆𝑏 > 0.4

342 difference of two long axis of the boundaries. As shown in Fig. S7, we indeed observe a two-fold 

343 change in the thickness of boundary aligned layer when changing the  from  to , 𝐸0 100 𝑃𝑎 5 𝑘𝑃𝑎

344 which can be explained as the increase of energy cost for neighbor cells to have nonparallel 

345 configuration and overlap.

346

347 Numerical experiments of lateral pressure

348 As shown in Fig. 5, to further illustrate the bidirectional coupling effects between cell ordering 

349 and stresses, we design a numerical experiment by imposing an artificial compression on lateral 

350 direction. The G-II biofilm is first growing under normal condition (without lateral pressure) for 

351 ~10 hrs; then we impose lateral pressure by biaxially deforming the surrounding gel boundary by 

352  and . Denote the time point imposing lateral compression as , we measure 

Δ𝐿𝑥

𝐿𝑥
= 0.2

Δ𝐿𝑦

𝐿𝑦
= 0.2

𝑡0

353 the evolution of average shear stress  and the alignment parameter  during the time 𝜏𝑒𝑞 𝛼 = |�̂�1 ⋅ �̂�𝑐|

354 window . We find that the lateral compression nearly instantly changes the 
‒ 0.2 <

𝑡 ‒ 𝑡0

𝑇𝑑𝑜𝑢𝑏𝑙𝑒
< 1

355 stress state across the whole biofilm. In contrast, the reorientation process takes roughly  to 

𝑇𝑑𝑜𝑢𝑏𝑙𝑒

2

356 reach a steady value, indicating the existence of local energy barriers for each cell due to the 

357 configuration of neighboring particles.

358

359 Numerical experiments with spatially patterned gel stiffness



360 We design a variation of G-II biofilm simulation by spatially patterning the surrounding gel 

361 stiffness. We set the gel modulus 10-fold softer inside a cylindrical region, with the center line 

362 pass through the initial seeding cell and the radius of . The remaining part of gel has the 20 𝜇𝑚

363 homogeneous Young’s modulus of . Under this confinement settings, we observe 20 𝑘𝑃𝑎

364 significant morphology change and different cell alignment compared with normal simulation of 

365 G-II biofilms. Namely, the part of biofilm under the soft region forms a “bleb” indicating non-

366 uniform indentation depth of the soft part of the gel. Also, compared with normal G-II biofilms, 

367 significant number of cells are verticalized due to altered first principal stress direction. Our 

368 numerical experiments demonstrate the possibility of mechanically controlling biofilm 

369 morphology and cell ordering, and it might lead to more precise spatiotemporal control of the 

370 stress field and cell orientation field inside the biofilms.

371

372 Details of experimental measurements

373 Bacterial strains and cell culture

374 The details of bacterial strains can be found in the reference [12]. The biofilm growth experiments 

375 begin by first growing V. cholerae cells in LB broth (BD) overnight under shaken conditions, then 

376 back-diluted 30× in M9 media and grown under shaken conditions until reaching an optical density 

377 (OD) of 0.05-0.25. Different concentrations of agarose polymer are boiled in M9 media and then 

378 placed in a water bath to cool to 40-50°C without gelation. A 1 µL droplet of the bacterial culture 

379 is placed in the center of a glass-bottomed 96 well plate (MatTek) after being diluted in M9 media 

380 to an OD of 0.001-0.003. The bacteria are sandwiched between the solidified gel and the glass 

381 substrate by the 20 µL of liquid agarose that is used to cover the droplet. (Note that we ignore the 

382 droplet's ~5% dilution of the agarose.) In order to serve as a nutrient reservoir, 200 µL of M9 

383 media is put in the well on top of the solidified agarose. Finally, cells are cultivated in static 

384 conditions at 30°C and imaged throughout several developmental stages.

385

386 Overview of image analysis

387 Raw images are first deconvolved using Huygens 20.04 (SVI) using a measured point spread 

388 function. The deconvolved three-dimensional confocal images are then binarized, layer by layer, 

389 with a locally adaptive Otsu method. To accurately segment individual bacterium in the densely 

390 packed biofilm, we develop an adaptive thresholding algorithm. Once segmented, we extract the 



391 cell positions by finding the center of mass of each object, and the cell orientations by performing 

392 a principal component analysis. The positions and directions of each cell are converted from 

393 cartesian  to cylindrical polar  coordinates where the origin is (𝑥,𝑦,𝑧,�̂�𝑥,�̂�𝑦,�̂�𝑧) (𝑟,𝜓,𝑧,�̂�𝑟,�̂�𝜓,�̂�𝑧)

394 found by taking the center of mass of all of the segmented cells in the plane. Reconstructed (𝑥,𝑦) 

395 biofilm images are rendered using Paraview. 

396
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433
434

435 Fig. S1. Time evolution of the thickness of the boundary layers d relative to the biofilm radius 

436 R in the simulated G-I biofilms confined by gels of various stiffnesses.

437
438



439

440 Fig. S2. A schematic illustration of agent-based model. A. Cell-cell interactions. The unit vector 

441  represents the director of a single cell. B. Cell-gel interactions. C. Schematics of cell growth and �̂�

442 division. After cell division, the mother cell is replaced by two daughter cells with nearly equal 

443 length.
444



445

446 Fig. S3. Comparison between different Hertzian contact models. A. Red solid line: the force-

447 displacement relation of the contact between two parallel cylinders. Blue solid line: the contact 

448 between two unparallel cylinders. B. The comparison between the generalized contact interaction 

449 (left) and the contact-area-dependent interaction. The simplification does not introduce observable 

450 error on cell alignment and the onset threshold for cell verticalization. C. The comparison of 

451 spatiotemporal evolution of hydrostatic pressure and the equivalent shear stress. Inset: the spatial 

452 distribution of the equivalent shear stress and the azimuthally averaged cell direction.
453



454

455 Fig. S3. Agent-based model captures biofilm growth morphodynamics. A. Representative G-

456 II biofilm formation process given by agent-based simulations. B. Contact angle changes with the 

457 Young’s modulus of the surrounding gel. Blue dashed line: 90 degrees. Top subfigures: the cross-

458 section view of the mature (grown after 12 hrs.) G-II biofilm in soft gel ( ) and hard 𝐸𝑔𝑒𝑙~102 𝑃𝑎

459 gel ( ).𝐸𝑔𝑒𝑙~104 𝑃𝑎

460



461

462 Fig. S4. Transmission of boundary shear stress. Compared with WT biofilm (with normal 

463 interface adhesion), biofilms without interface adhesion have significantly less boundary shear 

464 stress. The distance  is defined by the long axis length of self-similar ellipsoids.𝑟

465



466  

467

468 Fig. S5. Spatial distribution of stresses, density and rotation speed of G-II biofilms. A. Spatial 

469 distribution of the equivalent shear stress. B. Spatial distribution of hydrostatic pressure. C. 

470 Rotational speed. D. Cell density.



472

473 Fig. S6. Schematics illustration of possible stress states in biofilms. Black and green arrows 

474 denote the directions of the principal stresses. Green plane with black dashed boundary represents 

475 the degenerate plane of minimal compression.

476
477



478  

479 Fig. S7. Spatial distribution of alignment , stress anisotropy and direction of first |�̂�1 ⋅ �̂�𝑐|. 

480 principal stress of G-II biofilms. A. Alignment . B. Stress anisotropy . C. Direction of |�̂�1 ⋅ �̂�𝑐| 𝛼𝜎

481 first principal stress. 

482



483  

484 Fig. S8. The spatial distribution of  Growth time: 10 hours.|�̂�3 ⋅ �̂�𝑐|.

485



486  

487

488 Fig. S9. Representative traces for unstable (A-C) and stable (D-F) configurations of a cell 

489 after division. A. Time evolution of single cell length before/after cell division. Inset: Schematic 

490 illustration of mechanical instability after cell division. B. Time evolution of the cell rotation speed 

491 before/after cell division. Inset: Time evolution of alignment . C. Time evolution of the |�̂�1 ⋅ �̂�𝑐|
492 equivalent shear stress. D-F. Representative traces of cell length (D), rotation speed (E) and shear 

493 stress (F) for a stable configuration after division, respectively.

494



495

496 Fig. S10. Biofilm-gel interfacial adhesion controls boundary cell ordering. Blue solid line: The 

497 boundary bipolar ordering  changes with the interfacial adhesion . Orange solid line: the overall 𝑆𝑏 Γ

498 ordering  also has a slight increase with , mainly due to the increase of the boundary ordering.𝑆 Γ

499



500

501 Fig. S11. The effect of cell stiffness and interfacial adhesion on the thickness of boundary 

502 layer. (A) Three representative G-I biofilm with different cell-gel adhesion, hence different 

503 thicknesses of boundary alignment layer. (B) Time evolution of boundary layer thickness for 

504 various cell-gel adhesion . (C) Phase diagram showing the relation between boundary layer Γ

505 thickness , cell stiffness , and cell-gel adhesion .𝑑 𝐸𝑐𝑒𝑙𝑙 Γ

506


