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In this supplemental document, we present some details for modeling the evolution
dynamics of thin liquid structures to support the main text. In sections S. I we discuss
the influence of Peclet number on the droplet contact line movements. In section S. II,
we provide the thermodynamic consistency and the energy dissipation law of the coupled
model. In section S. III, we give the information for the number of discretization points
N versus Cn. In section S. IV, we validate the phase-field model with Cox’s theory and
conduct a sharp interface limit analysis based on the simulation results.

Figure S1: Time evolution of the base radius of a 2D-droplet spreading on a substrate with
varying Pe. Here, the base radius Rb is rescaled by the initial radius Ri = 0.82 mm. We set
τ̃w = 1 and θeq=120◦ for all of the four simulation cases.

1

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2024



S. I Discussion of Peclet number

The Peclet number (Pe) is a significant parameter in determining the interface motion and
it is related to the diffusivity and interface mobility. As a phenomenological parameter
in two-phase flows, the true value of Pe in the simulation is determined by comparing
the simulation result with experimental data. Lower values of Pe significantly emphasize
diffusion, slowing down the interface motion and making the model less representative of
the real physical behavior. On the other hand, high values of Pe diminish the influence
of diffusivity, possibly resulting in an unrealistic dominance of advection over diffusion.
Fig. S1 shows the 2D simulation results for droplets spreading on a solid substrate with
different values of Pe. It is found that as Pe decreases, the contact line motion slows down
monotonously.

S. II Energy dissipation

Obeying the second law of thermodynamics, the total energy functional Ftotal meets with

dFtotal

dt
≤ 0, (S1)

where Ftotal = F +Fs +E with E denoting the kinetic energy of the whole system. F
dissipates as
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(S2)

The first term is related to the chemical potential and the second term is related to Kortweg
stress tensor, which describes the transformation of the free energy into kinetic energy. Fs
dissipates as
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(S3)

2



Let the chemical potential at wall Φw = δFs
δc = 4σε∇c ·nnn−(γgs−γls)l′(c), the above equation

becomes

dFs

dt
=

∫
S

Φw
dc
dt

dS. (S4)

According to the Navier-Stokes equations, the dissipation of the total kinetic energy is
formulated as

dE

dt
=

∫
Ω

ρ
duuu
dt

uuudΩ

=
∫

Ω

∇ · [(−p−Φc+ f )III −4σε∇ · (∇c⊗∇c)+µ(∇uuu+∇uuuT )] ·uuudΩ.
(S5)

We assume that the density does not change, and under the conditions of no-slip boundary
condition and incompressibe flow, we have∫

Ω

[(−p−Φc+ f )III] ·uuudΩ = 0. (S6)

Therefore, Eq. (S5) becomes

dE

dt
=

∫
Ω

∇ · [−4σε∇ · (∇c⊗∇c)+µ(∇uuu+∇uuuT )] ·uuudΩ. (S7)

The total free energy functional Ftotal dissipates as

dFtotal

dt
=

∫
Ω

Φ
dc
dt

+∇ · [µ(∇uuu+∇uuuT )] ·uuudΩ+
∫

S
Φw
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dS. (S8)

From Eq. (3) and Eq. (21) in the main text, we know the time evolution of c, namely,
dc/dt in the bulk domain and on the fluid-solid boundary S follows the Cahn-Hilliard and
Allen-Cahn kinetics, respectively. Substituting dc/dt in Eq. (S8), we obtain

dFtotal

dt
=

∫
Ω

Φ∇ · (M∇Φ)+∇ · [µ(∇uuu+∇uuuT )] ·uuudΩ− 1
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∫
S

Φ
2
wdS

=−
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M(∇Φ)2dΩ−
∫
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∫
S

Φ
2
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(S9)

The above derivation proves the thermodynamic consistency of the present CHNS model
combined with Allen-Cahn type dynamic wetting boundary condition. As shown in the last
term of Eq. (S9), the parameter τw controls the energy dissipation rate on the substrate.

S. III Number of discretization points N versus Cn

Table S1 lists the number of discretization points N versus Cn from simulation results.
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Table S1: Number of discretization points N versus Cn.
Cn 1 2 4 6
N 2 4 8 12

S. IV Validation with Cox’s theory and sharp interface limit analysis

In Figs. 3 and 4 of the main text, we compared the simulation results with experimental
results in the literature. Here, we add an additional comparison of the simulation results
of a droplet spreading on the substrate against the theoretical results of Cox1,2. According
to Cox’s theory, the dynamic contact angle is determined by the viscous bending in the
following manner:

g(θD) = g(θeq)+Ca ln(δ−1). (S10)

The parameter δ is the ratio of the micrometer slip length (lS) to a macroscopic length
scale (e.g. droplet diameter). The capillary number Ca = µUw/σ with Uw denoting the

Figure S2: (a) Dynamic contact angle θD as a function of capillary number Ca when a
droplet slowly spreads on a solid substrate with Young’s contact angle θeq = 120◦. The
symbols with different colors indicate the results for droplets with different interface
widths (initial radius Ri is constant) and the corresponding solid lines are Cox’s theory
g(θD) = g(θeq)+Ca ln(δ−1) with different fitting parameters δ . The parameter δ is the ra-
tio of the micrometer slip length to a macroscopic length scale (e.g. droplet diameter) (b)
δ as a function of (2Ri/ε)2.
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velocity of the contact line. The function g(θ) is given:

g(θ) =
∫

θ

0

πα(π −α)+
(
2πα −π2)sinα cosα −π sin2

α

2π2 sinα
dα. (S11)

Cox’s theory is limited to small Ca and simple geometries. So we plot θD versus Ca in
the range of Ca < 0.1. The different colored symbols indicate the simulation results for
different values of ε/2Ri, where we reduce the interface width (Cn = const., but mesh
resolution is increased) to achieve the sharp interface limit. The corresponding solid lines
are the results of Cox’s theory with different fitting parameters δ . A satisfactory agreement
can be found between the simulation results and theoretical results. In addition, according
to Kusumaatmaja et al.2, a sharp interface limit is approached as Mµ/ε2 → ∞. We keep
the mobility M and viscosity µ unchanged and reduce the interface width ε. We plot the
functional relationship between (2Ri/ε)2 and δ in Fig. S2(b). It is found that as (2Ri/ε)2

increases, the value of δ tends to be convergent, showing a tendency to approach the sharp
interface limit. It is noted that in the sharp interface limit, the slip length is proportional
to the diffusive length scale lS ∝ lD = Mµ/ε2. So the slip length is only dependent on
viscosity and mobility. We can thus regulate mobility to achieve different slip lengths in
the simulations.
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