Elaboration and rheological characterization of nanocomposite hydrogels containing C₆₀ fullerene nanoplatelets

Théo Merland^{1,2}, Mathieu Berteau¹, Marc Schmutz³, Stéphanie Legoupy⁴, Taco Nicolai¹, Lazhar Benyahia¹, Christophe Chassenieux¹

¹ Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

² Soft Matter Sciences and Engineering, ESPCI Paris, PSL University, Sorbonne University, CNRS, F-75005 Paris, France

³ Université de Strasbourg, CNRS, Institut Charles Sadron, UPR 22, 23 Rue du Loess, 67034 Strasbourg Cedex, France

⁴ Univ Angers, CNRS, MOLTECH-ANJOU, F-49000 Angers, France

SUPPORTING INFORMATION.

Figure S1. Shear modulus measured at T=20°C, ω =10 rad/s and γ =1% for neat 75C12 hydrogels (black circles), gels sonicated during 8 minutes (red triangles) and gels sonicated during 8 minutes in the presence of 40 vol% carbon disulfide, that eventually completely evaporated (green squares).

Figure S2. TGA thermogram obtained on freeze-dried powders for 75C12, C_{60} and their composite with 63% polymer and 37% fullerene.

Figure S3. Enlarged representative cryo-TEM pictures of C_{60} nanoplatelets dispersion in water before (a) and after redispersion following their freeze drying (b). Short white arrows show micelles (spherical + worm-like) formed by self-assembly of 75C12; long white arrows show the carbon-lacey supporting membrane; long black arrows show fullerene nanoplatelets; short black arrows show isotropic fullerene nanoparticles.

Figure S4. Apparent mass-weighted molar mass obtained by SLS for a dispersion of C_{60} nanoplatelets (black circles) and their re-dispersions in water at different concentrations as indicated in legend.

Figure S5. Evolution of complex viscosity upon fullerene concentration for hydrogels with various polymer concentrations as indicated in legend.

Figure S6. a) Storage (G', close symbols) and loss (G'', open symbols) moduli as a function of frequency (ω) for a hydrogel with $C_{pol}=100 \text{ g/L}$ and $C_{full}=51 \text{ g/L}$ measured at various temperature as indicated in the figure. b) Master curve of the same rheological data using 20°C as reference. The gray solid line is a Maxwell model with G=10 kPa and τ =3s. c) Arrhenius plot for the same hydrogel and a control sample with $C_{pol}=100 \text{ g/L}$.

Figure S7. G' and G'' as a function of strain for hydrogels with $C_{pol}=a$) 50 g/L and b) 100 g/L and various fullerene concentrations indicated in legend, at T=20°C and ω =10 rad/s.

Figure S8. a) Stress and b) strain at rupture as a function of fullerene concentration with various C_{pol} as indicated in legend. c) Stress at rupture vs strain at rupture. Dashed line displays a power law with an exponent equal to - 3/2.