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Supplementary Information 

1. Benchmark geometric properties calculation for discretized surfaces 

Calculation of local mean curvature  and Laplacian of the mean curvature  (which is 

a fourth-order derivative) is central to the evaluation of bending energy and force. We assess the 

accuracy of our method for computing these geometric quantities on triangulated surfaces using 

the representative shape of red blood cells (RBCs), depicted in Figure S1. The analytical 

expression of this biconcave shape is given by 

 

Here,  is the normalized projected radial distance, with  being the length of 

the large half-axis of the RBC. The values for the constants  and  are 0.2072,2.0026, and 

-1.1228, respectively.1 To make the curvature dimensionless, we set  in the test. With this 

analytical expression, the geometric properties of this surface can be theoretically calculated by 

differential geometry, enabling the comparison with those calculated on the triangulated surface. 

The numerical and analytical results have been plotted as functions of the polar angle , which 

is defined as follows: 

 

Here, , , and  are the Cartesian coordinates of the vertex  of the discretized surface. The 

relative errors for each vertex  are given by the normalized Euclidean norms:2  

 

 

where  and  are normalized by the maximum absolute values of the mean curvature and the 

Laplacian of the mean curvature on the entire surface. Figure S2 shows that the maximal error of 

the mean curvature does not converge as mesh density increases, while the average relative error 

follows a second-order convergence. The fourth-order quantity, the Laplacian of the mean 

curvature, fails to converge even for the average relative error, retaining a systematic deviation. 

Our results are consistent with previous reports.2 
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2. Validation of vesicle shape transformation  

We performed a comprehensive validation of our model by reproducing previously observed 

phase diagrams of vesicle shapes. The bending modulus , volume modulus , and area 

modulus  were set to 0.01, 2.0, and 1.0, respectively. The preferred surface area  was set to 

the surface area of a unit sphere . The preferred vesicle volume is calculated according to the 

reduced volume, which is the ratio of the vesicle volume  to the volume of a sphere with the 

same surface area , . The total volume of a vesicle can be defined as 

, where  is the volume of the tetrahedron formed by triangle  and an arbitrary 

point (selected as the origin here) and  is the total number of triangles of the mesh. This 

volume is calculated by the following formula:3 

 

Here,  is the area of triangle  and  is the corresponding height of the tetrahedron. The total 

area of the membrane surface is computed by summing up areas of all triangles: 

 

The initial vesicle shapes were selected as oblate and prolate spheroids. 

 

Figure S3 presents the energy curves following different reduced volumes for initial oblate and 

prolate vesicle configurations. This diagram delineates the normalized bending energy of the 

vesicles in relation to the reduced volume. Notably, the phase diagram we derived from vesicle 

shape optimization aligns closely with theoretical predictions in both energy and shapes. Figure 

S4 showcases the final equilibrium shapes of both prolate and oblate branches for  ranging from 

0.6 to 1.0. For the prolate branch, the vesicle elongates as the reduced volume decreases. When  

reaches 0.67, the vesicle adopts a dumbbell shape. Further reductions in volume lead to the 

emergence of metastable states.4 In contrast, vesicles initially shaped as oblates flatten as  

decreases and transition to a biconcave form when the reduced volumes lie between 0.59 and 

0.65. Crucially, it is observed that a single target reduced volume can yield two distinct, locally 

minimized energy states, contingent on the initial shape of the vesicle. 
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Supplementary Figures 

 

 
 

Figure S1. A discretized biconcave shape with 1280 triangles. 
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Figure S2. (a) Maximum and (b) average relative errors for the mean curvature. (c) Maximum 

and (d) average relative errors for the Laplacian of the mean curvature. 
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Figure S3. Minimized energy states at different reduced volumes for vesicles with the oblate and 

prolate spheroids as the initial shapes. The number of triangles of the mesh is 5120. The dashed 

lines represent the theoretical results adapted from Ref. 5. The insets show representative 

dumbbell and biconcave shapes of vesicles at low reduced volume. 
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Figure S4. Equilibrium shapes of vesicles at different reduced volumes with the oblate (top) and 

prolate (bottom) spheroids as the initial shapes.   
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Figure S5. Normalized (a) total, (b) bending and (c) adhesion energies of spherical vesicles 

having two different mesh densities (5120 and 20480 triangles) interacting with a single 

nanoparticle of relative curvature  at different effective wrapping fractions. The solid 

and open symbols represent the states with particles located outside and inside the vesicle, 

respectively. 
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Figure S6. An array of equilibrium snapshots of single particle interaction with spherical fluid 

vesicle for different positive relative curvatures (outside particle) and target wrapping fractions. 

The vesicle mesh is composed of 5120 triangles. 
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Figure S7. An array of equilibrium snapshots of single particle interaction with spherical fluid 

vesicle for different negative curvatures (inside particle) and target wrapping fractions. The 

vesicle mesh is composed of 5120 triangles. 
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Figure S8. Normalized (a) total, (b) bending and (c) adhesion energies of spherical vesicles 

having two different mesh densities interacting with a single nanoparticle of relative curvature 

 at different effective wrapping fractions. The solid and open symbols represent the 

states with particles located outside and inside the vesicle, respectively. 
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Figure S9. Detailed views of (a) representative intermediate wrapping state and (b) unstable neck 

morphology for external particle wrapping at target wrapping fraction  of 0.9 and relative 

curvature  of 0.3. The final equilibrium (c) wrapping state and (d) neck morphology are also 

depicted for comparison. The number of triangles of the vesicle is 5120. The brown color 

indicates the particles with the bias potential. 
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Figure S10. Final equilibrium snapshots of two adjacent particles having a relative curvature  

of 0.3 interacting with a spherical vesicle from outside at different target wrapping fractions.
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Supplementary Videos 

 

Movie S1. Single nanoparticle interaction with a biconcave-shaped vesicle from the top concave 

region with no biasing potential (red particle). 

 

Movie S2. Simultaneous interaction of two nanoparticles with a biconcave-shaped vesicle from 

the top and bottom of the biconcave region with no biasing potential (red particles).  

 

Movie S3. Simultaneous interaction of two nanoparticles with a biconcave-shaped vesicle from 

the convex “waist” region with a biasing potential with a target wrapping fraction of 0.5 (brown 

particles). 

 

 


