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1 Electronic Supplementary Information

1.1 Standard continuous-time BG model and the position probability density function

In the standard settings1,2, the BG model is defined by a pair of coupled overdamped continuous-time Langevin equations of the form

Ẋt =−Xt +uYt +ξx(t) ,

Ẏt =−Yt +uXt +ξy(t) ,
(S1)

where t is a continuous time variable, the dot denotes the time-derivative, the coupling parameter |u| < 1, while ξx(t) and ξy(t) are
independent Gaussian noises with zero mean and the covariance function

ξi(t)ξ j(t ′) = 2Tjδi, jδ (t − t ′) , i, j = x,y . (S2)

As in eqs. (4) and (12) presented in the main text, in eqs. (S2) the overbar denotes averaging over realisations of noises ξx,y(t), while
δi, j and δ (t) are the Kronecker symbol and the delta-function, respectively. For u = 0, eqs. (S1) and (S2) describe two independent
Ornstein-Uhlenbeck processes.

The solutions of eqs. (S1) with the initial conditions X0 = Y0 = 0 and Ẋ0 = Ẏ0 = 0 are explicitly given by

Xt = e−t
∫ t

0
dτ eτ cosh(u(t − τ)) ξx(τ)+ e−t

∫ t

0
dτ eτ sinh(u(t − τ)) ξy(τ) ,

Yt = e−t
∫ t

0
dτ eτ sinh(u(t − τ)) ξx(τ)+ e−t

∫ t

0
dτ eτ cosh(u(t − τ)) ξy(τ) .

(S3)

We focus next on the characteristic function
φ(ν1,ν2) = exp

(
iν1Xt + iν2Yt

)
. (S4)

The averaging in the latter expression can be performed straightforwardly to give

φ(ν1,ν2) = exp
(
−Tx

∫ t

0
dτ Q2

x(t,τ)−Ty

∫ t

0
dτ Q2

y(t,τ)
)
, (S5)

where

Qx(t,τ) = e−(t−τ)
(

ν1 cosh(u(t − τ))+ν2 sinh(u(t − τ))
)
,

Qy(t,τ) = e−(t−τ)
(

ν1 sinh(u(t − τ))+ν2 cosh(u(t − τ))
)
.

(S6)

Performing the integrals in eqs. (S6), we find

Tx

∫ t

0
dτ Q2

x(t,τ)+Ty

∫ t

0
dτ Q2

y(t,τ) = aν
2
1 +bν

2
2 − cν1ν2 , (S7)

where we have used the shortenings

a =
Tx p+Tyq
4(1−u2)

, b =
Txq+Ty p
4(1−u2)

, c =
(Tx +Ty) l
2(1−u2)

, (S8)

with

p = 2−u2 − e−2t
(

cosh(2ut)+usinh(2ut)
)
− (1−u2)e−2t ,

q = u2 − e−2t
(

cosh(2ut)+usinh(2ut)
)
+(1−u2)e−2t ,

l = u− e−2t
(

ucosh(2ut)+ sinh(2ut)
)
.

(S9)

Having defined the characteristic function, we find eventually the position probability density function by merely inverting the Fourier
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transform:

P(Xt ,Yt) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

dν1 dν2 e−iν1Xt−iν2Yt φ(ν1,ν2)

=
1

2πd
exp
(
−bX2

t +aY 2
t + cXtYt

d2

)
,

(S10)

where d =
√

4ab− c2 and the coefficients a, b and c are defined in eqs. (S8) and (S9). Note that the solution for a somewhat more
general model with arbitrary coefficients in eqs. (S1) is also available3–5.

1.2 Probability density function of the specific angular momentum

1.2.1 Characteristic function ΦL (ν).

We focus here on the characteristic function of the specific angular momentum which is formally defined by

ΦL (ν) = exp(iνL ) . (S11)

Using the formal definition of L in eq. (2) and the discrete-time evolution equations eq. (1) we have

L = u
(

X2
t −Y 2

t

)
+

√
2Ty

δ t
Xt ηy(t)−

√
2Tx

δ t
Yt ηx(t) , (S12)

such that the characteristic function of the specific angular momentum reads

ΦL (ν) = exp

(
iνu
(
X2

t −Y 2
t
)
+ iν

√
2Ty

δ t
Xtηy(t)− iν

√
2Tx

δ t
Ytηx(t)

)
. (S13)

In virtue of eq. (1) the components Xt and Yt of the BG position at time instant t are statistically-independent of the values of noises at
this very time instant. Therefore, we can average the latter expression with respect to ηx(t) and ηy(t). In doing so, we get

ΦL (ν) = exp
(
−
(

Ty

δ t
ν2 − iνu

)
X2

t −
(

Tx

δ t
ν2 + iνu

)
Y 2

t

)
, (S14)

which yields, upon averaging with the PDF in eq. (S10), the following explicit result:

ΦL (ν) =

(
1−4i(a−b)uν +4

(
bTx +aTy

δ t
+u2d2

)
ν

2 −4iud2
(
Tx −Ty

)
δ t

ν
3 +4d2 TxTy

δ t2 ν
4

)−1/2

, (S15)

where the coefficients a, b and c are defined in eqs. (S8) and (S9), and d =
√

4ab− c2. Therefore, the characteristic function ΦL (ν) is
the inverse of a square-root of a quartic polynomial of ν and becomes ill-defined, as mentioned above, in the limit δ t → 0. In the limit
t → ∞, the expression (S15) attains the form

ΦL (ν) =

(
1−2iu(Tx −Ty)ν +

(1+u2δ t)
(
4TxTy +u2(Tx −Ty)

2)
(1−u2)δ t

ν
2

− i
u(Tx −Ty)

(
4TxTy +u2(Tx −Ty)

2)
(1−u2)δ t

ν
3 +

TxTy
(
4TxTy +u2(Tx −Ty)

2)
(1−u2)δ t2 ν

4

)−1/2

.

(S16)

The above expression permits us to access the usual properties characterising the probability density function, i.e., the moments and
the cumulants. In particular, differentiating eq. (S16) with respect to ν once and twice, and setting ν = 0 afterwards, we find explicit
expressions for the first moment and the variance of L in eqs. (8) and (9).
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Fig. S1 Comparison of theoretical predictions for the probability density functions in eqs. (4) and (12) and the results of numerical simulations for
two values of the time-step δ t: δ t = 0.01 (blue) and δ t = 0.001 (magenta); and fixed Tx = 1, Ty = 5 and u = 0.5. Left panel: Logarithm of P(L ) versus
L . Dashed curves correspond to the exact expression, eq. (4), whereas the noisy curves depict the simulation results obtained using the approaches
I and II (see below). Central panel: Logarithm of P(W ) versus W . Dashed curves depict the exact expression, eq. (12), and the noisy curves - the
simulation results. Right panel: Zoom of the region around the maximal value of P(W ). Dashed curves are theoretical predictions in eq. (12). while
the symbols indicate the results of numerical simulations.

1.2.2 Probability density function P(L ).

The probability density function of the specific angular momentum is formally defined as

P(L ) =
1

2π

∫
∞

−∞

∫
∞

−∞

dXt dYt P(Xt ,Yt)
∫

∞

−∞

dν exp
(
− iνL −

(
Ty

δ t
ν

2 − iνu
)

X2
t −

(
Tx

δ t
ν

2 + iνu
)

Y 2
t

)

=

√
δ t
4π

∫
∞

−∞

∫
∞

−∞

dXt dYt√
TyX2

t +TxY 2
t

P(Xt ,Yt) exp

(
−

δ t
(
L −u

(
X2

t −Y 2
t
))2

4
(
TyX2

t +TxY 2
t
) )

.

(S17)

Turning to polar coordinates through the transformation Xt = ρ cos(θ) and Yt = ρ sin(θ), we formally rewrite the expression in the
second line in eq. (S17) as

P(L ) =
1

2d

√
δ t
π

∫ 2π

0

dθ√
Ty cos2(θ)+Tx sin2(θ)

∫
∞

0
dρ exp

(
−

δ t
(
L −uρ2 cos(2θ)

)2

4ρ2(Ty cos2(θ)+Tx sin2(θ))

)

× exp
(
−
(

bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ)
d2

)
ρ

2
)
.

(S18)

Performing the integral over ρ, we find the expression (4). In Fig. S1 (left panel) we present a comparison between our theoretical
prediction for P(L ) in eq. (4) and the results of numerical simulations. One observes a perfect agreement.

1.2.3 Finite δ t. Large-L asymptotic behaviour of P(L ).

The function Ξ(θ), eq. (5),is an oscillatory function of the polar angle θ , which has two minima (and two maxima) of equal depth
(height) on the interval [0,2π] (see Fig. S2). In general, the minima corresponding to L > 0 and L < 0 are attained at somewhat
different values of θ and have somewhat different depths, which signifies that P(L ) is asymmetric around L = 0. In the limit L → ∞,
the integral in eq. (4) is entirely dominated by the behavior of Ξ in the close vicinity of the minima, which yields the exponential
asymptotic form in eq. (10). Differentiating Ξ(θ) with respect to θ and equating the resulting expression to zero, we find an equation
that determines the positions of the extrema of Ξ. This is a fourth-order algebraic equation whose solution has a rather cumbersome
form. We therefore consider only the limiting case when the coupling parameter u is close (but not equal) to zero and δ t is also small, in
which limit it is possible to present rather compact explicit results. A rather cumbersome but straightforward analysis shows that here

1
L±

=

√
δ t

2TxTy

(
1−

(Ty +Tx)

2
√

TxTy
|u|+O

(
u2
))

. (S19)

When u = 0, we recover from the latter expression the result in eq. (7).
Another situation, in which a systematic analysis of the large-L asymptotic behaviour is possible, is that of thermodynamic equilib-

rium, i.e., Tx = Ty = T . Here, we pursue a slightly different approach focusing on the characteristic function in eq. (S16), which becomes
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Fig. S2 The function Ξ(θ) in eq. (5) versus the polar angle θ for Tx = 1, Ty = 5, u = 1/2 and δ t = 0.1. Red solid curve corresponds to L > 0, while
the blue one - to L < 0.

(for u2δ t ≪ 1)

ΦL (ν) =

(
1+

4T 2

(1−u2)δ t
ν

2 +
4T 4

(1−u2)δ t2 ν
4

)−1/2

. (S20)

The latter expression can be formally rewritten as

ΦL (ν) =

√
(1−u2)√(

1+
2T 2ν2

δ t

)2

−u2

=
√
(1−u2)

∫
∞

0
dxI0 (|u|x) exp

(
−
(

1+
2T 2ν2

δ t

)
x
)
,

(S21)

and hence, the probability density function attains the form

P(L ) =

√
(1−u2)δ t
2
√

2πT

∫
∞

0

dx√
x

I0 (|u|x) exp
(
−x− δ tL 2

8T 2x

)
, (S22)

where I0 is the modified Bessel function of the first kind. Setting u = 0 in eq. (S22), we recover our eq. (7) with Tx = Ty = T . Upon some
inspection, we realise that the large-L (more precisely, δ tL 2/(8T 2) is to be large and u - to be bounded away from zero) behaviour of
P(L ) is supported by the large-x behaviour of the integrand. To this end, we take advantage of the Hankel’s asymptotic expansion of
the modified Bessel function

I0(z) =
ez

√
2πz

(
1+

1
8z

+
9

2(8z)2 +O
(

1
z3

))
. (S23)

Inserting the latter expansion into eq. (S22) and performing integrations, we arrive at the converging asymptotic large-L expansion of
the form

P(L ) =

(
1−u2

8πT |uL |

)1/2( 2δ t
(1−|u|)

)1/4
exp

(
−
√

(1−|u|)δ t
2

|L |
T

)

×

(
1− (3|u|−2)T

4
√

2(1−|u|)δ t |uL |
+

3T 2

16δu2L 2 +O
(

1
|L |3

))
.

(S24)

Consequently, we recover the asymptotic form in eq. (10) with

L+ = L− =

√
2

(1−|u|)δ t
T , (S25)

which is fully consistent with eq. (S19). Note that the higher order terms in δ t and u are evidently missing here because we assumed
that u2δ t ≪ 1.

1.2.4 Continuous-time limit δ t → 0. Asymptotic behavior of P(L ).

We concentrate on the behaviour of the probability density function P(L ) in the limit δ t → 0. One notices that in this limit the second
term in eq. (6) becomes much larger than the first term, (i.e., u2 cos2(2θ)), which can be therefore safely neglected. In consequence,
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Fig. S3 Small δ t limit. Left panel : f (u,δ ) in eq. (S29) as function of ∆ = (Tx −Ty)/(Tx +Ty). Right panel: g(u,δ ) in eq. (S39) as function of ∆. In
both panels the dashed curve corresponds to u = 0, red solid curve - to u = 1/4, green - to u = 1/2 and blue - to u = 3/4.

we have

Λ(θ)≃ 2

d
√

δ t

((
Tx sin2(θ)+Ty cos2(θ)

)(
bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ)

))1/2
, (S26)

which implies that Λ(θ) diverges when δ t → 0. In this limit, the first term in the nominator in eq. (5) is much larger than the second
term, (i.e., sign(L )ucos(2θ)), which can be neglected. Therefore, the function Ξ(θ) in eq. (5) obeys (in this limit)

Ξ(θ)≃ Λ(θ)

2
(
Ty cos2(θ)+Tx sin2(θ)

)δ t

=

(
bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ)

Tx sin2(θ)+Ty cos2(θ)

)1/2 √
δ t
d

(S27)

and hence, vanishes in proportion to the square-root of δ t.

We assume that t →∞, in which case the coefficients a, b and c attain sufficiently simple time-independent forms. Using the definitions
of the coefficients a, b and c, and conveniently rewriting the terms entering the expression (S26) as

Tx sin2(θ)+Ty cos2(θ) =
Tx +Ty

2
(1−∆cos(2θ)) , ∆ =

Tx −Ty

Tx +Ty
,

bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ) =
Tx +Ty

4(1−u2)

(
1+usin(2θ)− (1−u2)∆cos(2θ)

)
.

(S28)

Further on, we suppose that L is finite (i.e., L δ t is small when δ t → 0) and expand the expression in the right-hand-side of eq. (4)
into the Taylor series in powers of δ t. In doing so, we realise that, in the leading in the limit δ t order, the probability density function
P(L ) in eq. (4) is given by eq. (11) with

f (u,∆) =
∫ 2π

0

dφ√
(1−∆cos(φ))

(
1+usin(φ)− (1−u2)∆cos(φ)

) . (S29)

The integral in the latter equation cannot be performed exactly. To get an idea of the behaviour of f (u,∆), we depict it in Fig. S3
as function of ∆ for several values of the coupling parameter u. Note that f (u,∆) is (logarithmically) diverging in the limit ∆ → ±1,
i.e., when either of the temperatures vanishes. It was shown in6 that this limit is rather peculiar and the case when either of the
temperatures vanishes is to be treated separately. We therefore suppose that both Tx,Ty > 0. Further on, correction terms to the leading
asymptotic behaviour in eq. (11) are of order L δ t. We verified that the coefficient in front of L δ t is finite, such that a uniform
distribution of L in the limit δ t → 0 is a valid feature.

1.3 Probability density function of the specific angular velocity.

1.3.1 Characteristic function ΦW (ν).

Using the discrete-time Langevin eq. (1), we write the specific angular velocity as

W =
u
(
X2

t −Y 2
t
)

X2
t +Y 2

t
+

√
2Ty Xt ηy(t)−

√
2Tx Yt ηx(t)√

δ t
(
X2

t +Y 2
t
) , (S30)
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such that characteristic function ΦW (ν) is given by :

ΦW (ν) = exp

(
iνu

(
X2

t −Y 2
t
)

X2
t +Y 2

t
+ iν

√
2Ty Xt ηy(t)−

√
2Tx Yt ηx(t)√

δ t
(
X2

t +Y 2
t
) )

. (S31)

Again, noticing that the instantaneous values of the noises ηx(t) and ηy(t) at time t have no effect on the instantaneous positions Xt and
Yt at this very time, we straightforwardly average over ηx(t) and ηy(t) to get

ΦW (ν) = exp

(
iνu

(
X2

t −Y 2
t
)

X2
t +Y 2

t
−

Ty ν2X2
t

δ t(X2
t +Y 2

t )
2 − Tx ν2Y 2

t

δ t(X2
t +Y 2

t )
2

)
. (S32)

1.3.2 Probability density function P(W ).

The probability density function P(W ) of the specific angular velocity is formally defined as

P(W ) =
1

2π

∫
∞

−∞

dν ΦW (ν)e−iνW

=
1

2π

∫
∞

−∞

dν e−iνW
∫

∞

−∞

∫
∞

−∞

dXt dYt P(Xt ,Yt)

× exp

(
iνu

(
X2

t −Y 2
t
)

X2
t +Y 2

t
−

Ty ν2X2
t

δ t(X2
t +Y 2

t )
2 − Tx ν2Y 2

t

δ t(X2
t +Y 2

t )
2

)
.

(S33)

Changing the integration variables to polar coordinates, we formally rewrite the latter expression as

P(W ) =
1

(2π)2
√

4ab− c2

∫ 2π

0
dθ

∫
∞

−∞

dν exp
(

iν (ucos(2θ)−W )
)

×
∫

∞

0
ρ dρ exp

(
−

ν2 (Ty cos2(θ)+Tx sin2(θ)
)

δ tρ2 −
(

bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ)
4ab− c2

)
ρ

2

)

=
1

π2δ t
√

4ab− c2

∫ 2π

0

(Ty cos2(θ)+Tx sin2(θ))dθ√
Λ2(θ)−u2 cos2(2θ)

∫
∞

0
ν dν cos

(
ν (ucos(2θ)−W )

)

×K1

(√
Λ2(θ)−u2 cos2(2θ)ν

)
,

(S34)

where K1 is the modified Bessel function and Λ(θ) is defined in eq. (6). Performing the integral over ν , we arrive at our result in eq.
(12).

1.3.3 Finite δ t. Large-W asymptotic behaviour of P(W ).

Asymptotic large-W behaviour of the probability density function P(W ) in eq.(12) can be accessed very directly by merely expanding
the denominator in inverse powers of W . Verifying that all the integrals defining the coefficients in this expansion exist, we find

P(W ) =
(Tx +Ty)

2dδ t
1

|W |3
−

3u(Tx −Ty)

4dδ t
1

W 4 +o
(

1
W 4

)
. (S35)

In the limit t → ∞, eq. (S35) gives

P(W ) =

√
1−u2(Tx +Ty)√

4TxTy +u2(Tx −Ty)2δ t

1
|W |3

+
3u

√
1−u2(Ty −Tx)

2
√

4TxTy +u2(Tx −Ty)2δ t

1
W 4 +o

(
1

W 4

)
. (S36)

The first term in this expansion is our eq. (14) presented in the main text, while the second term defines the sub-dominant contribution.
Interestingly enough, the amplitude of the second term vanishes in equilibrium conditions (i.e., for Tx = Ty) such that in equilibrium the
sub-dominant contribution will vanish with W at a faster rate.

Journal Name, [year], [vol.],1–11 | 7



Because of the algebraic tail, P(W ) has only the first moment. In virtue of eq. (S30), we have

W = u
(

X2
t −Y 2

t

X2
t +Y 2

t

)
= u

∫
∞

−∞

∫
∞

−∞

dXtdYt P(Xt ,Yt)

(
X2

t −Y 2
t

X2
t +Y 2

t

)

=
u
√

1−u2(Tx −Ty)√
4TxTy +u2(Tx −Ty)2

.

(S37)

This is a well-known result which shows that W is not equal to zero when simultaneously u ̸= 0 and Tx ̸= Ty. In general, W is a non-
monotonic function of the coupling constant u, which vanishes when either u = 0 or |u| = 1 and, hence, attains a maximal value for
some intermediate coupling.

1.3.4 Continuous-time limit δ t → 0. Asymptotic behaviour of P(W ).

We focus on the PDF P(W ) defined in eq. (12) and suppose that W is finite. Since Λ(θ) diverges in the limit δ t → 0, in the leading in
δ t order, we are entitled to W -dependent terms in the denominator. Then, using eqs. (S26) and (S28), we have

P(W )≃ d2
√

δ t
16π

∫ 2π

0

dθ

(Ty cos2(θ)+Tx sin2(θ))1/2(bcos2(θ)+asin2(θ)+ ccos(θ)sin(θ))3/2

=
(4TxTy +u2(Tx −Ty)

2)

8π(Tx +Ty)2

√
2(1−u2)δ t

∫ 2π

0

dφ√
(1−∆cos(φ))(1+usin(φ)− (1−u2)∆cos(φ))3

,

(S38)

i.e., our eq. (15) with g(u,∆) given by

g(u,∆) =
∫ 2π

0

dφ√
(1−∆cos(φ))(1+usin(φ)− (1−u2)∆cos(φ))3

. (S39)

Likewise f (u,∆) in eq. (S29), g(u,∆) diverges logarithmically when ∆ → ±1, i.e., either of the temperatures vanishes. Therefore, the
asymptotic form in eq. (15) is valid only when both temperatures are bounded away from zero.

1.3.5 Probability density function P(W ) in the decoupled case u = 0.

Lastly, we aim to find an analogue of eq. (7) which describes the probability density function P(L ) in the decoupled case u = 0. For
u = 0, the probability density function in eq. (12) 1becomes (in the limit t → ∞)

P(W ) =
1

2π

√
δ t

TxTy

∫ 2π

0

(
Ty cos2(θ)+Tx sin2(θ)

)
dθ(

δ t W 2 +
2

TxTy

(
Ty cos2(θ)+Tx sin2(θ)

)2
)3/2

. (S40)

Using the first of eqs. (S28) and the integral identity

p(
a2 + p2

)3/2
=
∫

∞

0
τ dτ J0 (aτ) e−pτ , (S41)

we cast eq. (S40) into the form

P(W ) =

√
δ t
2

∫
∞

0
τ dτ J0

(√
δ t W τ

)
J0

(
i
(Tx +Ty)√

2TxTy
∆τ

)
exp

(
−
(Tx +Ty)√

2TxTy
τ

)

=−
√

δ t
2

d
dα

∫
∞

0
dτ J0

(√
δ t W τ

)
J0 (iβτ) exp(−ατ) , α =

(Tx +Ty)√
2TxTy

, β =
(Tx −Ty)√

2TxTy
.

(S42)

The integral in the last line in eq. (S42) can be performed explicitly to give

P(W ) =− δ t1/4

π
√

2iβW

d
dα

Q−1/2

(
α2 +δ t W 2 −β 2

2iβW
√

δ t

)
, (S43)
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where Q−1/2 is the Legendre function. It might be also convenient to express the result in eq. (S43) in an explicit form using the Gauss
hypergeometric functions:

P(W ) =
(Tx +Ty)

√
TxTyδ t (2+δ t W 2)

2(2Ty +Txδ t W 2)(2Tx +Tyδ t W 2)
2F1

(
3/4,1/4;1;−

2(Tx −Ty)δ t W 2

TxTy(2+δ t W 2)2

)

+
(Tx −Ty)

2δ t3/2W 2

4(TxTy)3/4(2+δ t W 2)3/2(2Ty +Txδ t W 2)(2Tx +Tyδ t W 2)
2F1

(
5/4,3/4;2;−

2(Tx −Ty)δ t W 2

TxTy(2+δ t W 2)2

)
.

(S44)

Importantly, when two processes, eq. (1) are decoupled, the probability density function P(W ) is an even function of W , such that
it is symmetric around W = 0, likewise the probability density function of the angular momentum (see eq. (7)). The dependence on
temperatures and the functional form of the probability density function P(W ) are evidently much more complicated than P(L ) in eq.
(7).

1.4 Probability density function of the moment of inertia

We evaluate here the probability density function of the moment of inertia I = X2
t +Y 2

t , which is a positive definite random variable.
Therefore, it is convenient to focus on its moment-generating function

ΦI (λ ) = exp(−λI ) , λ ≥ 0 , (S45)

for which one readily obtains the following exact result

ΦI (λ ) =
(

1+4(a+b)λ +4d2
λ

2
)−1/2

, (S46)

where the coefficients a, b, c and d are defined in eqs. (S8) and (S9). Inverting the latter expression, we find the probability density
function

P(I ) =
1

2d
exp
(
− (a+b)

2d2 I

)
I0

(√
(a−b)2 + c2

2d2 I

)
, (S47)

where I0 is the modified Bessel function. In the limit t → ∞, P(I ) attains the form

P(I ) =

√
1−u2

4TxTy +u2(Tx −Ty)2 exp
(
−

Tx +Ty

4TxTy +u2(Tx −Ty)2 I

)

× I0


√

4u2TxTy +(1−u2 +u4)(Tx −Ty)2

4TxTy +u2(Tx −Ty)2 I

 .

(S48)

In the case of two decoupled Ornstein-Uhlenbeck processes (i.e., for u = 0), the probability density function in eq. (S48) simplifies
considerably to give

P(I ) =

√
1

4TxTy
exp
(
−

Tx +Ty

4TxTy
I

)
I0

(
|Tx −Ty|

4TxTy
I

)
. (S49)

In Fig. S4 the probability density function P(I ) is depicted as function of I for three values of u (u= 0, 0.5 and 0.8) and temperatures
Tx = 1 and Ty = 5. Noisy curves are the solutions of stochastic eqs. (S1) using the Euler-Maruyama algorithm, while the dot-dashed curves
correspond to the analytical expression (S48). One observes a perfect agreement between the numerical results and the theoretical
prediction. We also note that the most probable value of the moment of inertia I is attained at I = 0, which explains why large values
of W are abundant and therefore, why P(W ) possesses heavy power-law tails.

1.5 Numerical simulations.

Numerical simulations of the BG model are performed by using the standard Euler-Maruyama algorithm. To compute the angular
momentum and the angular velocity, we take advantage of two alternative approaches:
– Approach I. The first approach relies on the formal definition of W as the rate of change of the angular position with respect to time

W =
δθ

δ t
, (S50)
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Fig. S4 The moment of inertia I . The probability density function P(I ) versus I for Tx = 1 and Ty = 5. Noisy curves depict the results of numerical
simulations, while dot-dashed curves - the exact expression (S48).
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Fig. S5 Fits of the results of numerical simulations. Logarithm of the probability density function P(W ) versus W for Tx = 1, Ty = 5, u = 1/2 and
δ t = 0.002. The dashed curve is the exact analytical solution in eq. (12). Panel (a): The red noisy curve represents lnP(W ) evaluated using approach
I. The blue solid curves are the fits of the red curve by power-law functions 1/|W |α− for negative W and 1/W α+ for positive W . Panel (b): Symbols
(filled green circles) depict the numerical results obtained via approach II. The solid black curves are the fits of the numerical data obtained via
approach II by the above power-law functions. The inset shows the best-fit values of the exponents.

where the instantaneous value of the polar angle is expressed via the cartesian coordinates as

θ = atan2(Yt ,Xt) (S51)

where the function atan2 is the 2-argument arctangent7. While determining W through eq. (S50), we exercise care that at each
incremental step δθ does not exceed π, which is controlled by the increment δ t. Note also that within this approach the distribution
of the angular velocity has its support on the interval [−π/δ t,π/δ t], so that while evaluating P(W ) we consider only such values of W

that are away from the boundaries, in order to avoid aliasing effects appearing close to the boundaries of the interval. To access the
behaviour at larger values of W , we have to diminish the increment δ t. Of course, this can be readily done in numerical simulations,
but in experiments the value of δ t is bounded from below by the maximal frequency at which the images of the trajectories are taken.

Once W is determined, the angular momentum is found via the relation

L = (X2
t +Y 2

t )W . (S52)

Note that this approach is appropriate for the analysis of discrete-time trajectories recorded both in numerical simulations and in
experiments (see Fig. (3) in the main text), because it necessitates the position data only. In Fig. S1 the results obtained using the
approach I are depicted by noisy red curves.
– Approach II. The second approach hinges on the standard recursive solution of the time-discretised Langevin eq.(1), for which the
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angular momentum L and the angular velocity W are determined by eqs. (S12) and (S30), respectively. Generating in numerical
simulations the dimensionless noises ηx(t) and ηy(t), we build recursively the trajectories Xt and Yt and eventually calculate the angular
momentum and the angular velocity. Results obtained via this approach are depicted in Fig. S1 by noisy green curves. Note that this
second approach is only applicable for the numerical simulations.

Lastly, we comment on the discrepancy between the theoretically predicted exponent (= 3), characterising the tails of the probability
density function P(W ), and somewhat lower values deduced from the fitting of the experimentally-evaluated PDFs. To this end, we
resort to numerical simulations of the BG model using approaches I and II and preform the fitting of the numerical data, which we fully
control. These fits are presented in Fig. S5. We observe that for the same value of δ t (which is quite small, δ t = 0.002), the PDF P(W )

obtained within the approach I is defined on a much shorter interval, as compared to the one obtained in terms of approach II, and
hence, the large-W tails are systematically heavier than the exact solution. The best-fit values of the exponents α± obtained within the
approach I are α− ≈ 2.73 and α+ ≈ 2.71, respectively, which are somewhat higher that the exponents deduced from the experimental
data (see Fig. 3 in the main text). This implies that the accuracy of approach I, which is used to analyzse the experimental data, can
be somewhat improved by reducing δ t, but the latter cannot be made arbitrarily small due to natural limits imposed on the sampling
frequency of imaging the trajectories8. In turn, approach II appears to be more accurate giving the values of the exponents that are
closer to the predicted value.
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