Electronic Supplementary Information for

Worm-Globule Transition of Amphiphilic pH-Responsive Heterografted Bottlebrushes at

Air-Water Interface

Michael T. Kelly and Bin Zhao*

Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States

* Corresponding author. Email: <u>bzhao@utk.edu</u> (B.Z.)

Table S1. Structural Characteristics for Six Molecular Bottlebrush Polymers Used in this Work*

Molecular Bottlebrush	Grafting	Molar Ratio of PnBA-to-	M _n
Polymer	Density	PDEAEMA Side Chains	$(\times 10^{6} \text{ Da})$
MBB-B _{1.00} E _{0.00}	94.5%	1:00 : 0:00	2.69
MBB-B _{0.80} E _{0.20}	87.3%	0.80 : 0.20	2.60
MBB-B _{0.64} E _{0.36}	88.6%	0.64 : 0.36	2.73
MBB-B _{0.51} E _{0.49}	86.8%	0.51 : 0.49	2.75
MBB-B _{0.24} E _{0.76}	86.7%	0.24 : 0.76	2.89
MBB-B _{0.00} E _{1.00}	88.8%	0.00:1.00	3.09

* The degree of polymerization (DP) of the backbone is 406. The DP is 51 for alkyne endfunctionalized PnBA and 44 for alkyne-end-functionalized PDEAEMA side chains. The M_n values were calculated on the basis of the grafting density, the molar ratio of two side chain polymers, and the calculated molecular weights of PnBA and PDEAEMA from their DPs.

Figure S1. (a) Surface pressure (π)-mean area per brush (A) isotherms from two cycles of lateral compression and expansion for MBB-B_{1.00}E_{0.00} on the Milli-Q water surface and AFM images at different surface pressures: (b) $\pi = 0.5$ mN/m, (c) $\pi = 18$ mN/m, (d) $\pi = 19$ mN/m, (e) $\pi = 20$ mN/m, and (f) $\pi = 0.5$ mN/m again.

Figure S2. (a) Surface pressure (π)-mean area per brush (A) isotherms from two cycles of compression and expansion for MBB-B_{0.80}E_{0.20} on the surface of a 1.0 mM phosphate buffer with a pH of 10.0 and AFM images of MBB-B_{0.80}E_{0.20} bottlebrushes at different surface pressures: (b) $\pi = 0.5$ mN/m, (c) $\pi = 19$ mN/m, and (d) $\pi = 0.5$ mN/m. The isotherms are the same as in Figure 6a and are reproduced here to show where on the isotherms the AFM samples were prepared.

Figure S3. (a) Surface pressure (π)-mean area per brush (A) isotherms from two cycles of compression and expansion for MBB-B_{0.64}E_{0.36} on the surface of a 1.0 mM phosphate buffer with a pH of 10.0 and AFM images of MBB-B_{0.64}E_{0.36} bottlebrushes at different surface pressures: (b) $\pi = 0.5$ mN/m, (c) $\pi = 22$ mN/m, and (d) $\pi = 2.5$ mN/m. The isotherms are the same as in Figure 6c and are reproduced here to show where on the isotherms the AFM samples were prepared.

Figure S4. (a) Surface pressure (π)-mean area per brush (A) isotherms from two cycles of compression and expansion for MBB-B_{0.51}E_{0.49} on the surface of a 1.0 mM aqueous phosphate solution with a pH of 10.0 and AFM images of MBB-B_{0.51}E_{0.49} bottlebrushes at different surface pressures: (b) $\pi = 0.5$ mN/m, (c) $\pi = 21$ mN/m, and (d) $\pi = 2.5$ mN/m. The isotherms are the same as in Figure 6e and are reproduced here to show where on the isotherms the AFM samples were prepared.

Figure S5. (a) Surface pressure (π)-mean area per brush (A) isotherms from two cycles of compression and expansion for MBB-B_{0.24}E_{0.76} on the surface of a 1.0 mM aqueous phosphate solution with a pH of 10.0 and AFM images of MBB-B_{0.24}E_{0.76} bottlebrushes at different surface pressures: (b) $\pi = 1.0$ mN/m, (c) $\pi = 20$ mN/m, and (d) $\pi = 6.5$ mN/m. The isotherms are the same as in Figure 6g and are reproduced here to show where on the isotherms the AFM samples were prepared.