Supporting information for

Optimizing Anisotropic Transport on Bioinspired

Sawtooth Surfaces

Dillon G. Gagnon, Dahbin Park, Kevin Yim, and Svetlana Morozova

Department of Macromolecular Science and Engineering, Case Western Reserve University, OH,

Cleveland, USA.

Author for correspondence: Svetlana Morozova, svetlana.morozova@case.edu

Contact angles Pictures

Figure S1) Still images used to measure droplet contact angles. All blazed gratings are 12.7mm square prisms placed on a tilt table at 45°. The 10° and 17° $b = 1.67 \mu$ m surface images were taken at a later date, the camera tilt was changed causing an apparent change in surface angle, however all surfaces were are the same angle of 45°.

Optical Microscopy

Figure S2) Optical microscopy of acrylate resin templated surfaces. Delamination of the blazed grating results in the black patch seen in the 12° surface. All images taken with a Leica DMI 4000 B microscope with a 100x oil objective with the surfaces imaged in bright field using a Basler acA640-750um camera.

Contribution of b

Figure S3) Graph showing the velocity as a function of *b* blaze length.

PDMS Lithography

Figure S4) Still frames of water droplets rolling across PDMS templated surfaces α = 8.62° b = 1.67 µm

Aged PDMS

Figure S5) 5 μ L droplets on aged PDMS surfaces on 45° tilt table. The surfaces were dried between successive runs.

Confocal Imaging

Figure S6) Confocal Imaging of 0.01 mg/mL RhB dyed water on acrylate surfaces. A z scan was performed beginning below the surface with 80 nm steps in the z direction. 3d views were constructed with the FIJI 3d viewer Plug-in.