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A Estimation of the nematic coherence length

The nematic coherence length and, consequently, λ can be estimated from measurements of D and
Kelas/µ1, as shown by equation (24). On the one hand, D can be related with single-particle rotational
motion through the normalized time correlation functions [1]
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where D
p
mn (Ω(t)) is the Wigner rotational matrix element of rank p and Ω = (αe,βe,γe) is a set of

time-dependent Euler angles that specify particle’s orientation with respect to the global director field,
n0. It is customary to approximate Φ

p
mn (t) by a single exponential [1, 2]
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where the correlation time, τmn, is related with rotational diffusion constants of uniaxial particles through

1

τmn

= cmnD +n2
(

D
′−D

)

. (A3)

In equation (A3), n2 is the square of the subscript in τmn and should not be confused with the square
magnitude of the director field, D ′ describes spinning motion of a particle around its symmetry axis and
cmn are coefficients related with S and the fourth order scalar parameter, S4 = ⟨35(u ·n)4 −30(u ·n)2 +
3⟩/8 [1]. With the aim of calculating D only, we focus our attention on second rank correlations (p = 2)
with m = n = 0, for which D2

00 = P2 (cosβe). Here, P2 is the second-rank Legendre polynomial and βe

reduces to the polar angle of individual orientations with respect to n0. The corresponding coefficient,
c00, is calculated in reference [3] and reads as

c00 = 6
7+5S−12S4

7+10S+18S4 −35S2
. (A4)

We simulated 3D N-MPCD systems with volume V = (56a)3, periodic boundary conditions to ap-
proximate macro-scale behavior, and n0 pointing along the x3-axis of a Cartesian frame {x1,x2,x3}. We
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considered a density of 20 particles per collision cell, χHI = 0; and two collision times ∆t = 0.1 and
1.0ut . The nematic phase is observed for U ≳ 5 [10]. Thus, we vary nematicities in the range from
U = 6 to 12. We obtained Φ2

00(t) from trajectories of orientations ui fitting Φ2
00 (0), Φ2

00 (∞), and τ00 in
equation (A2) in the time interval from 2∆t to 20∆t. Measurements of global order parameters S and
S4, and equations (A3) and (A4) yielded values of D reported in table 1.

Table 1: Estimations of the rotational diffusivity D (in units of u−1
t ), and the ratio Kelas/µ1 (in units of au−1

t )

as function of the N-MPCD nematicity U , and collision time-step ∆t.
∆t = 0.1ut ∆t = 1.0ut

U D Kelas/µ1 D Kelas/µ1

6 0.28 0.316 0.074 0.220

7 0.23 0.287 0.071 0.200

8 0.17 0.270 0.080 0.188

9 0.15 0.256 0.070 0.180

10 0.13 0.248 0.065 0.174

11 0.13 0.242 0.065 0.170

12 0.16 0.237 0.083 0.166

On the other hand, Kelas/µ1 was obtained from dynamic spectra of local instantaneous director
fluctuations defined as δn(r, t) = n(r, t)− n0. We used the set of simulations for calculating D to
calculate also Kelas/γ1. Since in these simulations orientation and velocity fields are decoupled, N-
MPCD fluids are contained in cubic volumes with periodic boundary conditions, and n0 points along
the x3-axis, we have [5]

⟨δ ñα (k,ω)δ ñα (−k,−ω)⟩= An

ω2 +(Kelas/γ1)
2

k4
. (A5)

where α = 1,2 and no summation over repeated indices is implied. In equation (A5), we use a tilde
to indicate Fourier transform from space and time coordinates, r and t, to wave vector and angular
frequency coordinates, k and ω, respectively. Also in equation (A5), An can be considered a constant,
γ1 is a rotational viscosity related with µ1 by γ1 = 2µ1/(9S2); [4] and k = (k,0,0), with k = 2π jV−1/3

and j a positive integer.
Following references [5, 6], we recorded time series of space Fourier transforms of δn according to

δn(k, t) =
N

∑
i=1

[

ui (t)−n0

]

exp
(

−ik · ri (t)
)

, (A6)

where i2 = −1. These series permitted calculation of correlation functions which were subsequently
Fourier transformed to the ω domain. The resulting curves were fitted by equation (A5) considering
An and Kelas/γ1 as adjustable parameters. The latter showed a very small variation with respect to U ,
in agreement with previous measurements [5]. Then, we averaged the estimated ratio Kelas/γ1 over U ,
perpendicular fluctuations (α = 1,2), and four different wave numbers ( j = 1,2,3,4). Subsequently,
calculations of S yielded the values of Kelas/µ1 shown in table 1. We obtained ξN as function of U and
∆t from measurements in table 1 and equation (24). Results, shown in figure 1, confirm that the radius
of topological defects in N-MPCD is of the order of the collision cell size, i.e., ξN ≲ a [7, 8]. Then, we fit
data in figure 1 by cubic polynomials as in equation (25) yielding a0 = 2.11a, a1 =−0.56a, a2 = 0.065a,
and a3 = −0.003a, for ∆t = 0.1ut ; and a0 = 4.85a, a1 = −1.28a, a2 = 0.13a, and a3 = −0.005a, for
∆t = 1.0ut .
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Figure S 1: Nematic coherence length in N-MPCD. Symbols are obtained from equation (24) and measure-

ments of D and K/µ1 (table 1). Curves represent regression models by cubic polynomials.

Under the same simulation conditions, L can be estimated from [9]

L =
V kBT

2k2⟨Qα3 (k)Qα3 (−k)⟩ , (A7)

where, again, α = 1,2 and no summation is implied. We obtained the space Fourier transform of the
order parameter tensor tensor from

Qα3 (k) =
3

2N

N

∑
i=1

ui
α (t)ui

3 (t) exp
(

−ik · ri (t)
)

, (A8)

and measurements yielded L = 176kBT/a for U = 10 and ∆t = 1ut , which is in the order of magnitude
expected from previous calculations in N-MPCD [10, 11]. This value is used in equation (27) to get the
numerical estimates of Felas(t).

B Additional results for orientation patterns in squares

Figure S2 shows three instantaneous director patterns obtained after application of the orientation
collision operator in simulations conducted at U = 3 and R = 8a. They are compared with the average
field of figure 2 in the main text for the same U and R. It can be observed that fluctuations are stronger
around regions of small Sc, as expected, whereas fluctuations are relatively small near the square edges.

Figure S3 shows WORS and Diagonal solutions obtained for nematicities U = 3.0, 3.2, and 3.4,
maintaining R = 8a and χHI = 0 to eliminate reorientation effects produced by spontaneous flow fluc-
tuations. Also, we take ∆t to be 0.1, 0.5, and 1ut , which correspond to different rates of application
of multi-particle collision operator. WORS appears to be more stable at ∆t = 0.1ut . For this value, the
WORS is observed up to U = 3.4, although a proto-diagonal structure is formed in the central region
of the square. For larger ∆t, the stability of the WORS is lost at smaller U .

C Solution to the equation of motion of q(t)

To solve the system of equations (35) and (36), we write them in terms of polar coordinates q and
θ . After substituting q1 = qcosθ , and q2 = qsinθ into equations (35) and (36), and separating the
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Figure S 2: Three snapshots of director configurations for a N-MPCD fluid within a square well (U = 3,

R = 8a). Black lines indicate the average WORS whereas colored rods are instantaneous solutions after: (a)

1×103, (b) 2×103, and (c) 3×103 collisions steps from thermalization.

Figure S 3: Average textures for small squares (R = 8a) as function of U and ∆t.
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equations for dq/dt and dθ/dt, we obtain

dq

dt
= ζ

[

1

q
+

q− l cosθ

q2 −2ql cosθ + l2

]

, (C1)

dθ

dt
= ζ

l

q

sinθ

q2 −2ql cosθ + l2
. (C2)

We will solve equations (C1) and (C2) under a perturbation method where the motion of the defect
close to the vertex where annihilation occurs is taken as the main solution and the perturbation parameter
is the inverse of the distance to the opposite vertex, 1/l. Thus,

q(t) = q0 (t)+
1

l
q1 (t)+ · · · , (C3)

θ (t) = θ0 (t)+
1

l
θ1 (t)+ · · · , (C4)

where qi/li and θi/li are the solutions of order (1/l)i.
By expanding equations (C1) and (C2) in powers of the perturbation parameter we find the zeroth

order equations
dq0

dt
= ζ

1

q0

, (C5)

dθ0

dt
= 0, (C6)

whose solutions from an arbitrary time t to the annihilation time tanni read as

q0(t) =
√

−2ζ (tanni− t)1/2 , (C7)

and
θ0(t) = constant. (C8)

We also find the first order equations

dq1

dt
=−ζ

q1

q2
0

−ζ cosθ0, (C9)

and
dθ1

dt
=−ζ sinθ0

1

q0

, (C10)

whose solutions read as

q1 (t) =
2

3
ζ cosθ0 (tanni− t)+

c1√
2
(tanni− t)−1/2 , (C11)

and
θ1 (t) = θ1 (tanni)−

√

−2ζ sinθ0 (tanni− t)1/2 . (C12)

In equation (C11), c1 is a constant that vanishes because q(tanni) = 0. Then, up to first order in the
perturbation parameter, we obtain

q(t) = q0 (t)+
1

l
q1 (t) =

√

−2ζ (tanni− t)1/2 +
2

3l
ζ cosθ0 (tanni− t) , (C13)
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and

θ (t) = θ0 (t)+
1

l
θ1 (t) = θanni−

√

−2ζ sinθ0

l
(tanni− t)1/2 , (C14)

where θanni = θ (t0) is the angle of incidence of q, i.e., the angle of the trajectory of the defect at the
annihilation instant.

Figure S4 shows measurements of the angles θ4,+, θ4,−, and θ5,+ for the defects depicted in figure 14.
These measurements have been fitted by equation (C14) using θanni = ϕint/2 and θ0 as adjustable
parameter.

Figure S 4: Time-dependence of the angular coordinate of defects that annihilate at polygons vertices. In (a),

θ4,+ and θ4,− are the angles of defects that annihilate in a square (figure 14 (a)). In (b), θ5,+ is the angle of

a defect annihilated within a pentagon (figure 14 (b)). Symbols correspond with simulation measurements,

whereas continuous curves represent a fit based on equation (C14). The horizontal dash-dotted line indicates

the assumed value of θ at the annihilation instant, θanni.
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Movie captions

1. Movie S1: Fast relaxation of a nematic liquid crystal (NLC) system confined to a square domain,
from an initial random configuration towards a Diagonal stable state. The corresponding changes
of the elastic distortion are given by the black noisy curve in figure 7 of the main text. This
animation encompasses a time interval of 4080ut , with frames separated by regular intervals of
80ut . Simulation parameters are given in section 5.1 of the main text with U = 10, R = 64a,
χHI = 0.1, and ∆t = 1.0ut . These are the same for all the supplementary movies. Small bars
represent the director field at 4000 randomly selected cells of the nematic multi-particle collision
dynamics (N-MPCD) algorithm. Bars are scaled 3 times to facilitate visualization. The color bar
indicates the order parameter at collision cells, Sc. This way of representating the director and
order parameter fields is used in all the supplementary movies.

2. Movie S2: An alternative relaxation process for a NLC system in a square domain that converges

to the Diagonal solution. Textures traverse the unstable state illustrated in insets 4
(d)
D and 4

(e)
D in

figure 7 of the main text. The corresponding evolution of the elastic distortion is given by the red
noisy curve in the same figure. Here, the animation ecompasses 11840ut , with frames separated
by 160ut .

3. Movie S3: An alternative relaxation process for a NLC system in a square domain that yields the

Diagonal solution. Textures traverse the unstable solutions illustrated in insets 4
(g)
D and 4

(h)
D in

figure 7 of the main text. The corresponding evolution of the elastic distortion is given by the blue
noisy curve in the same figure. Here, the animation ecompasses 6400ut , with frames separated
by 160ut .

4. Movie S4: Relaxation of a NLC system confined within a square domain, from an initial random
configuration towards the Rotated solution. Director configurations traverse the unstable solution

illustrated in inset 4
(a)
R in figure 8 of the main text. The corresponding evolution of the elastic

distortion is given by the black noisy curve in the same figure. This movie ecompasses 1600ut ,
with frames uniformly separated by 40ut .

5. Movie S5: An alternative relaxation process for a NLC system in a square domain that yields

the Rotated solution. Textures traverse the unstable solutions illustrated in insets 4
(d)
R and 4

(e)
R

in figure 8 of the main text. The corresponding evolution of the elastic distortion is given by the
red noisy curve in the same figure. This animation ecompasses 5120ut , with frames separated by
80ut .

6. Movie S6: Relaxation of an initially disordered NLC system in a pentagon domain. The confined
NLC system converges to the so-called Meta state after exhibiting the boundary-distortion (BD)

configuration represented in insets 5
(a)
M and 5

(b)
M in figure 10 of the main text. The corresponding

changes of the elastic distortion are given by the black noisy curve in the same figure. This
animation encompasses a time interval of 15000ut , with frames separated by regular intervals of
200ut .

7. Movie S7: An alternative relaxation pathway of a NLC system in a pentagon that yields the Meta

solution. Textures traverse the unstable solutions illustrated in insets 5
(d)
M and 5

(e)
M in figure 10 of

the main text. The corresponding changes of the elastic distortion are given by the red noisy curve
in the same figure. Here, the animation ecompasses 7520ut , with frames separated by 160ut .
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8. Movie S8: An alternative relaxation pathway of a NLC system confined to a pentagon that

yields the Meta solution. Textures traverse the unstable solutions illustrated in insets 5
(g)
M and

5
(h)
M in figure 10 of the main text. The corresponding changes of the elastic distortion are given
by the blue noisy curve in the same figure. Here, the animation ecompasses 10000ut , with frames
separated by 160ut .

9. Movie S9: An alternative relaxation pathway of a NLC system confined to a pentagon that

yields the Meta solution. Textures traverse the unstable solutions illustrated in insets 5
(j)
M and 5

(k)
M

in figure 10 of the main text. The corresponding changes of the elastic distortion are given by
the orange noisy curve in the same figure. Here, the animation ecompasses 1600ut , with frames
separated by 40ut .

10. Movie S10: N-MPCD simulation of the relaxation process of a NLC confined within a hexagon
domain. The confined fluid starts from a disordered configuration and converges to the so-called
Para state. The corresponding evolution of the elastic distortion of the system is given by the
black noisy curve in figure 12 in the main text. This animation encompasses a time interval of
16800ut , with frames separated by regular intervals of 400ut .

11. Movie S11: An alternative relaxation process for an initially disordered NLC system confined
to a hexagon domain. The simulated NLC system converges to the Para state after traversing

configurations 6
(d)
P and 6

(e)
P in figure 12 in the main text. The corresponding changes of the

elastic distortion are given by the red noisy curve in the same figure. This animation encompasses
25000ut . To show the transitory states clearly, the first 10 frames are separated by 80ut ; the
second 8 frames are separated by 400ut ; and the remaining frames are separated by 800ut .

12. Movie S12: An alternative relaxation process for an initially disordered NLC system confined
to a hexagon domain. The simulated NLC system converges to the Para state after traversing

configuration 6
(g)
P in figure 12 in the main text. The corresponding changes of the elastic distortion

are given by the blue noisy curve in the same figure. This animation encompasses 20000ut . To
show the transitory states clearly, the first 14 frames are separated by 120ut and the remaining
frames are separated by 800ut .
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