Supplementary Information

Substituting fossil-based with bio-based chemicals: The case of limonene as a greener pore expander for micellar templated silica

Umair Sultan^{a,b}, Katrin Städtke^a, Andreas Göpfert^a, Daniel Lemmen^a, Ezzeldin Metwali^c, Santanu Maiti^c, Carola Schlumberger^d, Tadahiro Yokosawa^e, Benjamin Apeleo Zubiri^e, Erdmann Spiecker^e, Nicolas Vogel^b, Tobias Unruh^c, Matthias Thommes^d, Alexandra Inayat^a

Figure S1. Comparison of the pore size distributions of templated silica (LIM-16, LIM-36 and TMB-36) and commercial silica gel to visualise the need for template and expander to obtain high pore volumes and narrower pore size distribution in the size range of 10 to 25 nm.

Figure S2. Pore size distributions from nitrogen physisorption for samples synthesised with low (36) and high (96) expander/P123 molar ratio using TMB (top row) and limonene (LIM, bottom row). The comparison of pore size distributions calculated from the adsorption and desorption branches of the isotherms shows very similar mode pore diameters. This indicates that the majority of the pores are not restricted by narrower pore openings and are freely accessible.

Sample	Micropore volume (cm³ g⁻¹)
silica gel	0.001
SBA-15	0.008
ТМВ-4	0.008
ТМВ-16	0.060
ТМВ-36	0.020
тмв 56	0.003
ТМВ-76	0.010
ТМВ-96	0.030
LIM-4	0.040
LIM-16	0.007
LIM-36	0.020
LIM-56	0.030
LIM-76	0.020
LIM-96	0.020

Table S1. Micropore volumes (from t-plot) for all the mesoporous silica samples

Figure S3. Low magnification overview SEM images of mesoporous silica materials with increasing expander to P123 molar ratio using TMB (left column) and limonene (right column) as expander molecule. All scale bars are 20 μm.

Table S2. Elementary or process flows, calculated quantities for the production of 1 t expander molecule and specification of the input data taken from the ecoinvent database.

Elementary or process flow	Quantity for the	Ecoinvent process / category						
	production of 1t							
	expander molecule							
Inputs Pouto TMP								
Self-condensation (implemented dat	alfrom simulation))							
Acotono liquid*	Acetone, liquid* 3076.2 kg phenol production from cumene							
	5070.2 kg	acetone, liquid Cutoff, U - RER						
Silica sand (Nb cut-off)	38.7 kg	silica sand production silica sand						
	50.7 Kg	Cutoff, U - DE						
Electricity, medium voltage	25163.2 MJ	electricity voltage transformation						
		from high to medium voltage						
		electricity, medium voltage						
		Cutoff, U –DE						
		market for electricity modium						
sconario: gato gato ronowable		weltage label certified Lelectricity						
scenario, gale-gale renewable		woltage, label-certified electricity,						
energy								
transport of 1.5 t crude oil from	1836 t*km	transport nipeline offshore						
Russia to Germany (1224 km	1050 (101	netroleum						
pipeline)		petroleum						
transport of 2 t hard coal from	2600 t*km	transport, freight train (for hard						
Russia to Germany (1300 km)		coal)						
Outputs Route TMB								
ТМВ	1000.0 kg	None (new implemented)						
Acetic acid	2.1 kg	Elementary flow> Emission to air/						
		unspecified						
Hydrocarbons, aliphatic, alkenes,	11.7 kg	Elementary flow> Emission to air/						
C12, internal		unspecified						
Isobutene	11.2 kg	Elementary flow> Emission to air/						
Trimethylhenzone	16.2 kg	Figure 1						
Thmethylbenzene	10.2 Kg	high population density						
Acetone (recycling)	585 kg	Elementary flows Emission to air/						
Acetone (recycling)	JOJ. Kg	unspecified						
Catalyst (ideal recycling)	35.0 kg	none						
Waste water average	687 5 kg	Water supply> Sewerage						
	007.5 Kg							
Inputs Route Limonene								
Orange juice production								
Orange, fresh grade	571.9 t	orange production, fresh grade						
		orange, fresh grade Cutoff, U - ES						
Nitric acid	0.2 kg	nitric acid production, product in						
		50% solution state nitric acid,						
		without water, in 50% solution						
		state Cutoff, U - RER w/o RU						

Soda ash, dense	6.0 kg	market for soda ash, dense soda ash, dense Cutoff, U - GLO
heat, district or industrial, natural gas	11.9 MJ	heat and power co-generation, natural gas, 1MW electrical, lean burn heat, district or industrial,
electricity, medium voltage	115.1 MWh	without Switzerland electricity voltage transformation from high to medium voltage electricity, medium voltage Cutoff, U - ES
Steam distillation		
Orange peel	192.3 t	Orangepeel_Allo5
Water, deionised	14.8 t	water production, deionised water, deionised Cutoff, U - Europe without Switzerland
electricity, medium voltage	35944.4 MJ	electricity voltage transformation from high to medium voltage electricity, medium voltage Cutoff, U –DE
scenario: gate-gate renewable energy		market for electricity, medium voltage, label-certified electricity, medium voltage, label-certified Cutoff, U - CH
transport of 192 t dry orange peel from Spain to Germany by lorry (1300 km)	249600 t*km	transport, freight, lorry EURO5
Outputs Route Limonene		
Orange juice production		
Orange peel	192.3 t	none
Orange juice (allocation)	611.0 t	none
Waste water (orange juice production)	723.1 t	Water supply> Sewerage
Steam distillation (implemented date	a from simulation)	•
Limonene	1000.0 kg	none
By-products	20.0 t	Manufacturing> Manufacture of sugar
Compost	171.3 t	Agriculture, forestry and fishing>Support activities for crop production
Waste water	148 t	Water supply> Sewerage

Figure S4. Process of TMB production via self-condensation of acetone: AspenPlus flow sheet of the simulation using the NRTL model.

Figure S5. Process of limonene production from orange peels: AspenPlus flow sheet of the simulation using the NRTL model.

Table S3: Inputs for the self-condensation of acetone (production of TMB) and steam distillation of orange peels (production of limonene) for the AspenPlus simulation.

INPUTS TMB				
		T∕°C	p/bar	Comment
PROPERTY METHOD	NRTL			
FEED-Stream	Acetone	25	1	0.068 kmol.h ⁻¹
HEAT1 (HEATER)		350	1	
RSTOIC	2 ACE \rightarrow MO + H ₂ O	350	1	MO represented for all
	(X=0.6)			by-products
	ACE + MO \rightarrow TMB +H ₂ O			
	(X=0.7)			
HEAT2 (HEATER)		110	1	cooling
FLASH		85	1	Separation gas-liquid
RADFRAC	Stages: 34			Estimation DSTWU $ ightarrow$
	Feed-stage: 15			99.99 mol% TMB
	Distillate-to-feed: 0.291			
	Reflux ratio: 1.928			
INPUTS LIM				
PROPERTY METHOD	NRTL			
FEED-Streams	Water	20	1	324.310 kmol·h ⁻¹
	Limonene	20	1	31.162 kmol·h ⁻¹
HEAT (HEATER)		100	1	Steam generation
MIX1 (MIXER)				Mixing of water,
				Limonene, recycled
				Limonene from orange
				peel
RADFRAC	Stages: 5			Estimation DSTWU
	Feed-stage: 5			
	Distillate-to-feed: 0.829			
	Reflux ratio: 0.232			

Table S4: Absolute values of the LCA ecological impact indicators for the cradle-to-gate production of 1 t limonene.

Limonene	Ammonium Nitrate production	Irrigation	Pesticides	Energy for steam distillation	Cultivation of orange plantation	Transport	total impact (sum)
Fossil resource scarcity/ kg oil eq	176	63	105	468	136	201	1148
Freshwater eutrophication/ kg P eq	0.02	0.04	0.05	2.57	0.42	0.34	3.40
Global warming potential/ kg CO ₂ eq	590	182	423	1904	1441	426	4965
Human carcinogenic toxicity/ kg 1.4-DCB	1	3	2	123	5	184	318
Land use/ m²a crop eq	0	1	8	17	3784	62	3872
Terrestrial acidification/ kg SO ₂ eq	20	6	2	4	20	2	36
Water depletion potential/ m ³	9	2235	6	11	-619	4	1646

ТМВ	MB Benzene Propene		Energy self condensation	Process water (cooling)	Transport	total impact (sum)	
Fossil resource scarcity/ kg oil eq	1962	1012	195	0	87	3256	
Freshwater eutrophication/ kg P eq	0.82	0	1.65	0.02	0.10	2.57	
Global warming potential/ kg CO ₂ eq	2567	1079	1316	903	407	6272	
Human carcinogenic toxicity/ kg 1,4-DCB	49	0	73	8	25	326	
Land use/ m ² a crop eq	13	0	1	0	0	14	
Terrestrial acidification/ kg SO ₂ eq	8	2	2	0	0	12	
Water depletion potential/ m ³	35	8	9	25	11	88	

Table S5: Absolute values of the LCA ecological impact indicators for the cradle-to-gate production of 1 t 1,3,5-trimethyl benzene.