Supporting Information

Highly Efficient Synthesis of Sustainable Bisphenols from Hydroxycinnamic Acids

Cristian E. Zavala,^a Natalie Vest,^{a,b} Joshua E. Baca,^a Derek D. Zhang,^a K. Randall McClain, ^a and Benjamin G. Harvey^a*

^aUS NAVY, NAWCWD, Research Department, Chemistry Division, China Lake, California 93555

^bTexas A&M University, Chemistry Department, College Station, TX, USA

Table of Contents

Differential Scanning Calorimetry Results for Bisphenols	S3
GPC of PVP	S8
Crystallographic Data	S9
NMR Spectra	S14

DSC Thermal Analysis

Figure S1. Differential Scanning Calorimetry (DSC) trace of compound 1.

Figure S2. DSC trace of compound 2.

Figure S3. DSC trace of compound 3.

Figure S4. DSC trace of poly(vinylphenol) synthesized from *p*-coumaric acid.

Figure S5. DSC trace of an 8:2 cis/trans mixture of compound 1.

GPC of PVP

Figure S6 Gel permeation chromatorgraphy data for poly(vinylphenol) synthesized from *p*-coumaric acid.

Crystallographic Data

Table S1. Crystal data and structure refinement	for Compound 3 .
Identification code	Compound 3
Empirical formula	C ₁₈ H ₂₀ O ₆
Formula weight	332.36
Temperature/K	100
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	6.3732(5)
b/Å	9.3953(8)
c/Å	13.6384(12)
α/°	90
β/°	101.205(3)
γ/°	90
Volume/Å ³	801.08(12)
Z	2
ρ _{calc} g/cm ³	1.3778
µ/mm ⁻¹	0.103
F(000)	352.2
Crystal size/mm ³	0.316 × 0.198 × 0.152
Radiation	Μο Κα (λ = 0.71073)
2O range for data collection/°	5.3 to 50.68
Index ranges	$-7 \le h \le 7$, $-11 \le k \le 11$, $-16 \le l \le 16$
Reflections collected	9131
Independent reflections	1468 [R _{int} = 0.0340, R _{sigma} = 0.0228]
Data/restraints/parameters	1468/0/113
Goodness-of-fit on F ²	1.064
Final R indexes [I>=2σ (I)]	$R_1 = 0.0362$, $wR_2 = 0.0845$
Final R indexes [all data]	R ₁ = 0.0411, wR ₂ = 0.0877
Largest diff. peak/hole / e Å ⁻³	0.21/-0.20

Table S2. Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for Compound **3**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
O(001)	2269.2(15)	6907.5(11)	1135.6(7)	22.0(3)
O(002)	8645.7(15)	8548.6(11)	3054.0(7)	24.3(3)
O(003)	5739.4(16)	8531.6(11)	1360.4(7)	24.7(3)
C(004)	4776(2)	5991.4(14)	3742.5(10)	16.9(3)
C(005)	5444(2)	7693.2(14)	2146.1(10)	18.5(3)
C(006)	6622(2)	6822.8(14)	3835.2(10)	17.5(3)
C(007)	3617(2)	6854.9(14)	2049.8(10)	17.6(3)
C(008)	4343(2)	5100.3(14)	4561.6(10)	17.8(3)
C(009)	3282(2)	6015.8(14)	2842.9(10)	18.0(3)
C(00A)	6934(2)	7662.8(14)	3044.8(10)	18.0(3)
C(00B)	162(2)	6358.0(17)	1076.2(11)	25.2(4)
C(00C)	10225(2)	8563.1(17)	3959.4(11)	26.1(4)

Table S3. Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for Compound **3**. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₁₂	U ₁₃	U ₂₃
O(001)	20.0(5)	28.5(6)	15.3(5)	-0.7(4)	-2.0(4)	4.9(4)
O(002)	22.0(5)	28.6(6)	20.5(5)	-7.9(4)	0.0(4)	6.5(4)
O(003)	22.1(5)	30.2(6)	20.9(5)	-2.6(4)	2.4(4)	10.9(4)
C(004)	20.5(7)	15.3(7)	15.0(6)	1.4(5)	3.8(5)	-1.8(5)
C(005)	22.1(7)	18.2(7)	15.8(7)	3.1(6)	5.3(5)	3.9(5)
C(006)	19.9(7)	19.0(7)	12.8(6)	1.0(6)	0.9(5)	-0.8(5)
C(007)	19.5(7)	18.2(7)	13.9(7)	4.2(5)	0.5(5)	-0.3(5)
C(008)	19.7(7)	16.6(7)	17.3(7)	-2.8(5)	3.8(5)	-1.5(5)
C(009)	18.4(7)	17.0(7)	18.2(7)	-1.0(5)	2.3(5)	-0.5(5)
C(00A)	17.8(7)	17.0(7)	19.6(7)	0.0(5)	4.3(5)	-1.1(5)
C(00B)	18.5(7)	34.0(8)	20.6(7)	0.6(6)	-2.4(6)	1.4(6)

C(00C)	24.8(8)	30.1(8)	21.0(7)	
· · ·	· · ·	()		

-9.5(6) -1.5(6)

1.9(6)

 Table S4.
 Bond Lengths for Compound 3.

Atom Atom	Length/Å	Atom Atom	Length/Å
O(001) C(007)	1.3705(15)	C(004)C(009)	1.3993(18)
O(001) C(00B)	1.4266(17)	C(005)C(007)	1.391(2)
O(002) C(00A)	1.3705(17)	C(005)C(00A)	1.3972(19)
O(002) C(00C)	1.4336(16)	C(006)C(00A)	1.3811(19)
O(003) C(005)	1.3722(16)	C(007)C(009)	1.3880(19)
C(004) C(006)	1.3972(19)	C(008)C(008)	1.333(3)
C(004) C(008)	1.4645(18)		

Table S5. Bond Angles for Compound 3.

Atom Atom A	Atom Ang	gle/° Atom	Atom	Atom	Angle/°
C(00B) O(001) C	(007) 117.0	08(10) C(005)	C(007) (D(001) 1	15.51(12)
C(00C)O(002)C	(00A) 115.9	9(11) C(009)	C(007) (D(001) 1	24.44(12)
C(008) C(004) C	(006) 122.0	5(12) C(009)	C(007) 0	C(005) 1	20.04(12)
C(009) C(004) C	(006) 119.1	8(12) C(008)	¹ C(008) 0	C(004) 1	25.90(16)
C(009) C(004) C	(008) 118.7	7(12) C(007)	C(009) 0	C(004) 1	20.75(12)
C(007) C(005) O	(003) 119.3	9(12) C(005)	C(00A)	D(002) 1	13.56(12)
C(00A) C(005) O	(003) 121.5	9(12) C(006)	C(00A)	D(002) 1	25.10(12)
C(00A) C(005) C	(007) 119.0	01(12) C(006)	C(00A)	C(005) 1	21.34(12)
C(00A) C(006) C	(004) 119.6	68(12)			

Table S6. Hydrogen	Atom Coo	rdinates (Å×10⁴) and Isotropic Displ	lacement Paramet	ers (Å ² ×10 ³) for Compound 3
Atom	X	У	Z	U(eq)

Atom	x	y y	Z	Ú(eq)
H(009)	2025(2)	5451.7(14)	2774.3(10)	21.6(4)
H(006)	7657(2)	6810.5(14)	4439.0(10)	21.0(4)
H(003)	6846(16)	9028(14)	1534(4)	37.0(4)
H(008)	3005(2)	4622.1(14)	4459.0(10)	21.4(4)
H(00a)	-719(5)	6605(10)	427(3)	37.8(5)
H(00b)	227(3)	5321(2)	1150(8)	37.8(5)
H(00c)	-471(6)	6771(8)	1611(5)	37.8(5)
H(00d)	11358(9)	9241(8)	3893(3)	39.2(5)
H(00e)	9556(4)	8848(11)	4518.0(17)	39.2(5)
H(00f)	10842(12)	7609(3)	4086(4)	39.2(5)

Table S6. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for Compound **3**.

Figure S7. Unit Cell of Compound 3.

NMR Spectra of Isolated Compounds

Figure S8. ¹H NMR Spectrum of Compound 1.

Figure S9. ¹³C NMR Spectrum of Compound 1.

Figure S10. ¹H NMR Spectrum of Compound 2.

Figure S11 ¹³C NMR Spectrum of Compound 2.

Figure S16. ¹H NMR Spectrum of Poly(Vinylphenol)

Figure S18. ¹H NMR of Cis/Trans Mixture of Compound 1.

