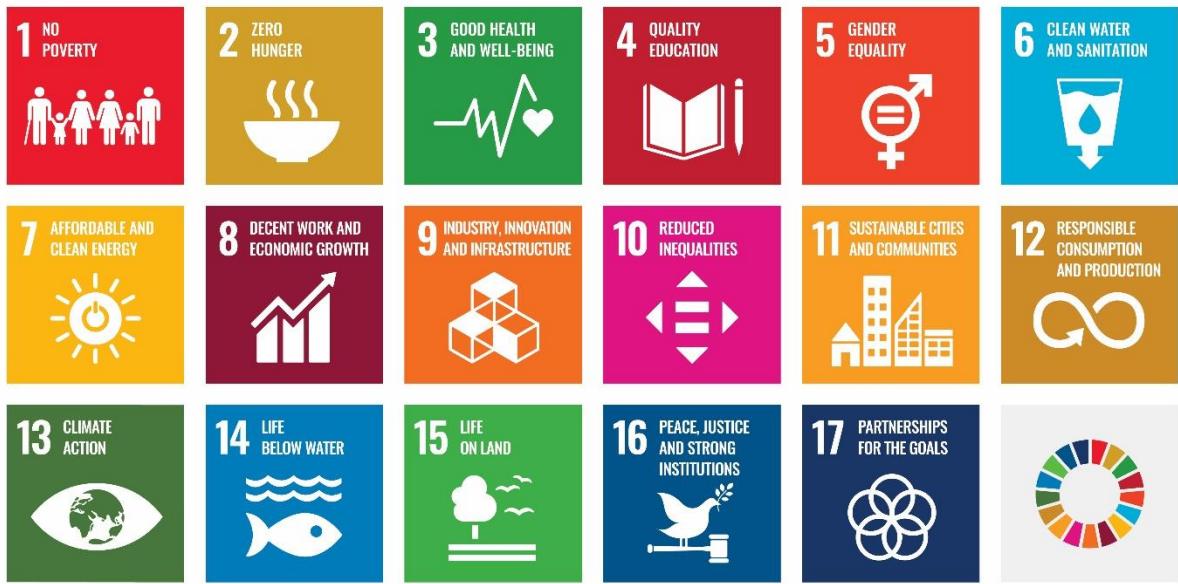


Supplementary Information

Eutectic solvents and low molecular weight gelators for next-generation supramolecular eutectogels: a sustainable chemistry perspective

Giselle de Araujo Lima e Souza,^a Maria Enrica Di Pietro ^{*a} and Andrea Mele ^{*a}


Table S1. The twelve principles of Green Chemistry (GCPs).¹

GCP1	Prevent waste
GCP2	Atom Economy
GCP3	Less Hazardous Synthesis
GCP4	Design Benign Chemicals
GCP5	Benign Solvents & Auxiliaries
GCP6	Design for Energy Efficiency
GCP7	Use of Renewable Feedstocks
GCP8	Reduce Derivatives
GCP9	Catalysis (vs. Stoichiometric)
GCP10	Design for Degradation
GCP11	Real-Time Analysis for Pollution Prevention
GCP12	Inherently Benign Chemistry for Accident Prevention

Table S2. The twelve principles of Green Analytical Chemistry (GAC) and the mnemonic SIGNIFICANCE.²

GAC1	Direct analytical techniques should be applied to avoid sample treatment.
GAC2	Minimal sample size and minimal number of samples are goals.
GAC3	In situ measurements should be performed.
GAC4	Integration of analytical processes and operations saves energy and reduces the use of reagents.
GAC5	Automated and miniaturized methods should be selected.
GAC6	Derivatization should be avoided.
GAC7	Generation of a large volume of analytical waste should be avoided and proper management of analytical waste should be provided.
GAC8	Multi-analyte or multi-parameter methods are preferred versus methods using one analyte at a time.
GAC9	The use of energy should be minimized.
GAC10	Reagents obtained from renewable source should be preferred.
GAC11	Toxic reagents should be eliminated or replaced.
GAC12	The safety of the operator should be increased.
S	Select direct analytical technique
I	Integrate analytical processes and operations
G	Generate as little waste as possible and treat it properly
N	Never waste energy
I	Implement automation and miniaturization of methods
F	Favor reagents obtained from renewable sources
I	Increase safety for operator
C	Carry out <i>in-situ</i> measurements
A	Avoid derivatization
N	Note that the sample number and size should be minimal
C	Choose multi-analyte or multi-parameter method
E	Eliminate or replace toxic reagents

SUSTAINABLE DEVELOPMENT GOALS

Figure S1. The 17 UN Sustainable Development Goals (SDGs) (free download and use for informational purposes ³).

References

- [1] P. Anastas and J. Warner, *Green Chemistry: Theory and Practice*, Oxford University Press Inc., Oxford, 1998.
- [2] A. Gałuszka, Z. Migaszewski and J. Namieśnik, The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices, *TrAC - Trends Anal. Chem.*, 2013, **50**, 78–84
- [3] United Nations, Sustainable Development Goals: Communication Materials, <https://www.un.org/sustainabledevelopment/news/communications-material>.