Electronic Supplementary Information (ESI)

Ruthenium catalyzed transformation of levulinic acid to γ -valerolactone in water

Bhanu Priya,[†] Vinod K. Sahu[†] and Sanjay K. Singh^{*}

Catalysis group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore 453552, India. E-mail: <u>sksingh@iiti.ac.in</u>

[†]Equal contribution

General Information, Materials, and Instrumentation. All reactions were performed using high purity chemicals purchased from Sigma Aldrich, TCI chemicals and Alfa Aesar. Chemicals purchased were used as received without any further purification. The ¹H NMR (400 MHz and 500 MHz), ¹³C NMR (100 MHz and 125 MHz) and ³¹P NMR (162 MHz and 202 MHz) spectra are recorded at 298 K using DMSO- d_6 methanol- d_4 , or CDCl₃ as the solvent on a Bruker Advance 400 and Bruker Ascend 500 spectrometer. Tetramethylsilane (TMS) is used as an external standard and the chemical shifts in ppm are reported relative to the centre of the singlet at 3.35 and 4.78 for methanol- d_4 , 2.49 ppm for DMSO- d_6 and 7.26 for CDCl₃ in ¹H NMR and to 49.3 ppm for methanol-d₄, 39.50 ppm for DMSO-d₆ and 77.0 for CDCl₃ in ¹³C NMR. ESI (positive mode), and liquid chromatography mass spectroscopy (LCMS) are recorded on a micro-TF-O II mass spectrometer. Single crystal was obtained by diffusion of diethyl ether into methanolic solution of the complex. Suitable single crystals of complexes [Ru]-4, [Ru]-5 and [Ru]-8 were subjected to single-crystal X-ray structural studies using CCD Agilent Technologies (Oxford Diffraction) Super NOVA diffractometer. Data are collected at 150(2) K using graphitemonochromated Mo Ka radiation ($\lambda \alpha = 0.71073$ A). The strategy for the data collection

evaluated using the CrysAlisPro CCD software. The crystal and refinement data are summarized in Table 1 (in manuscript). Selected bond lengths and bond angles are summarized in Tables S1 and S2. CCDC deposition numbers of the complexes [**Ru**]-4, [**Ru**]-5 and [**Ru**]-8 are 1971292, 1971295 and 1971294 respectively. ICP-AES data was recorded using ARCOS, Simultaneous ICP Spectrometer, SPECTRO Analytical Instruments GmbH, Germany.

Table S1. Comparative chart showing literature available Ru-based catalytic systems for transformation of LA to GVL.

Catalytic system	Solvent	Additive	H ₂ source	T(°C)/ t(h)	TON	TOF (h ⁻¹)	Conv. (%) of LA	Sel./Yield (%) of GVL	Ref.
Ru(acac) ₃ /TPPTS	water	-	$70 \text{ bar } H_2$	140/12	600	50	>99.9	100/95	S 1
RuCl ₃ /PPh ₃	water	pyridine	НСООН	150/6	930	155	>99.9	100/93	S2
Ru(acac) ₃ /PPMDP	neat	p-TsOH	80 bar H ₂	140/168	75855	452	n.d.	n.d./76	S 3
Ru(acac) ₃ /Bu-DPPDS	neat	-	100 bar H ₂	140/1.8	6370	3540	>99.9	100/>99	S4
[RuH ₂ (CO) (Triphos)]	neat	-	100 bar H ₂	160/18	1000	56	>99.9	90/90	S5
Shvo catalyst	neat	-	НСООН	95/6	1065	177	>99.9	>99/>99	S 6
[Ru(<i>p</i> -cymene)Cl (DPDP)][BArF]	neat	КОН	НСООН	120/16	960	60	96	100/n.d.	S7
[Ru(p-cymene)Cl (QMABA)]	neat	KOH, Et ₃ N	НСООН	150/12	980	81.6	98	100/n.d.	S 8
[Ru(CO ₃)(CO) (Triphos)]	1,4- dioxane	-	50 bar H_2	130/25	1200	48	>99	60/60	S9
[{Ru(<i>p</i> -cymene)Cl} ₂ TEPMP][2BPh ₄]	neat	Et ₃ N	НСООН	120/8	990	123	100	97/n.d.	S 10
$[\{\eta^4-2,3,4,5-$ Ph ₄ (C ₄ CO) $\}$ Ru(CO) ₃]	neat	-	$50 \text{ bar } H_2$	100/5	720	144	100	100/99.1	S 11
[η ⁶ -p-cymene)RuCl (κ ² -pyNH ⁿ pr)] ⁺	water	Et ₃ N	НСООН	80/2	40	20	>99.9	$100/87^{\rm a}$	This work

TPPTS:triphenylphosphinetrisulfonate,Bu-DPPDS:dibutyl(phenylphosphine)(m-disulphonate),PPMDP:{[(phenylphosphinediyl)bis-(1,2-phenylene)]bis(methylene)}bis-(diphenylphosphine),BArF:tetrakis[3,5-bis(trifluoromethyl)phenyl]borate,DPDP:1-[2-{(diphenylphosphaneyl)oxy}ethyl]-3,5-dimethyl-1H-pyrazole,QMABA:[(quinolin-2-ylmethylene)amino]benzoic acid,TEPMP:Tetraethyl ethane-1,2-diylbis((pyridin-2-ylmethyl)phosphoramidite),

crystal parameter	complex [Ru]-4	complex [Ru]-5	complex [Ru]-8	
empirical formula	C ₂₀ H ₃₀ ClF ₆ N ₂ PRu	C20H30ClF6N2PRu	C21H32ClF6N2PRu	
formula weight	579.95	579.95	593.97	
temperature (K)	293	293	298	
wavelength (Å)	1.54184	1.54184	1.54184	
crystal system	triclinic	monoclinic	orthorhombic	
space group	P-1	$P2_{1}/c$	Pbca	
crystal size (mm ³)	0.23 x 0.18 x 0.14	0.22 x 0.19 x 0.17	0.31 x 0.21 x 0.18	
a (Å)	9.3898(7)	10.9086(2)	17.5759(4)	
b (Å)	11.9327(9)	9.2051(2)	15.4169(2)	
c (Å)	12.8169(7)	24.7878(4)	18.4534(4)	
α (°)	100.642(6)	90	90.0(1)	
β (°)	109.691(7)	99.912(2)	90.0(1)	
γ (°)	107.961(7)	90	90.0(1)	
V (Å ³)	1217.62(19)	2451.91(8)	5000.23(17)	
Z	2	4	8	
ρ (g/cm ³)	1.582	1.571	1.578	
μ (mm ⁻¹)	7.354	7.304	7.178	
F (000)	588	1176.0	2416.0	
2θ range for data collection (°)	7.74 to 142.92	7.24 to 143.766	9.01 to 124.984	
index ranges	$-11 \le h \le 10$,	$-13 \le h \le 13$,	$-19 \le h \le 20$,	
	$-14 \le k \le 11$,	$-11 \le k \le 11$,	$-17 \le k \le 17$,	
	$-14 \le 1 \le 15$	$-29 \le l \le 30$	$-21 \le l \le 16$	
reflections collected/ independent reflections	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
data/restraints/parameters	4635/1/281	4708/0/285	3980/105/295	
goodness-of-fit on F ²	1.132	1.263	1.088	
final R indexes $[I > 2\sigma$ (I)]	$\begin{array}{l} R_1 \ = \ 0.0667, \ wR_2 \ = \\ 0.1520 \end{array}$	$R_1 = 0.1026, wR_2 = 0.2923$	$R_1 = 0.0680, wR_2 = 0.1904$	

Table S2. Crystal Refinement data of complexes [Ru]-4, [Ru]-5 and [Ru]-8.

R indexes (all data)	$\begin{array}{l} R_1 \ = \ 0.0776, \ wR_2 \ = \\ 0.1636 \end{array}$	$\begin{array}{l} R_1 = 0.1159, \; wR_2 = \\ 0.3268 \end{array}$	$\begin{array}{l} R_1 = 0.0827, \; wR_2 = \\ 0.2126 \end{array}$
Largest diff. peak/hole (eÅ ⁻³)	1.59/-1.22	1.80/-1.28	1.32/-1.16

Table S3. Important bond lengths (Å) for complex [Ru]-4, [Ru]-5, [Ru]-8.

	[Ru]-4	[Ru]-5	[Ru]-8
Ru-Ct	1.676	1.679	1.687
Ru-Cavg	2.183	2.195	2.200
Ru-N _{py}	2.099(6)	2.089(7)	2.079(5)
Ru-N _{amine}	2.127(5)	2.138(7)	2.196(7)
Ru-Cl	2.406(16)	2.398(2)	2.392(18)
N _{amine} -C ₆	1.468(8)	1.442(13)	1.492(9)

Table S4. Important bond bond Angles (°) and torsion angles (°) for complex [Ru]-4, [Ru]-5,[Ru]-8.

Bond Angles (°)						
	[Ru]-4	[Ru]-5	[Ru]-8			
N _{py} -Ru-N _{amine}	78.1(2)	76.9(3)	76.1(2)			
N _{py} -Ru-Cl	84.32(16)	83.89(19)	85.68(14)			
Namine-Ru-Cl	84.60(13)	82.8(2)	82.55(19)			
N_{amine} -Ru- C_t	132.35	133.62	137.38			
N _{py} -Ru-C _t	131.98	131.61	129.24			
Ct-Ru-Cl	127.33	128.69	126.82			
Torsion Angles (°)						
Npy-C5-C6-Namine	-30.36(8)	-17.71	27.34			

General procedure for the synthesis of pyridylamine (L2 – L8) ligands. *N*-pyridylamine ligands L2 – L8 were synthesized by following the previously reported two step procedures.^{S12-S16} Typically, in Step-I, condensation of pyridine-2-carboxaldehyde (1 equiv.) and corresponding

amine (1.0 ~ 10.0 equiv.) in THF (20 mL) at room temperature was carried out for 24 h. The progress of the reaction was monitored by TLC (thin layer chromatography). After reaction completion, all the volatiles were removed under reduced pressure and product obtained was analysed by ¹H NMR and then used in next step. In the next step, the compound obtained from previous step was dissolved in methanol (20 mL) followed by addition of 0.946 g NaBH₄ under ice-cold conditions. Then the reaction mixture was allowed to stir for 24 h at room temperature. Methanol was then removed under reduced pressure and the obtained crude product was extracted with dichloromethane and water to remove excess NaBH₄. Volatiles are removed under reduced pressure and analysed by ¹H and ¹³C NMR and used without further purification.

E 4	Catalyst	4 (b)	$\mathbf{C}_{\mathbf{a}}$	GVL	TOF (h ⁻¹)
Entry	loading	t (n)	CONV. (%)	Sel./Yield ^b	
	(mol%)			(%)	
1	0.25	24	92	83/72	15
2	1.0	6	98	>99/94	16
3	2.5	2	>99	>99/95	20
^{<i>a</i>} Reaction condition: [Ru]-2 catalyst, LA (1 mmol), HCOOH (6 mmol), Et ₃ N (1 mmol), water (5					
mL), 80 °C, 2 h. ^b Yield is calculated using maleic acid as an internal standard.					

Table S5. Effect of catalyst loading on catalytic transformation of LA to GVL.^a

Fig. S1 Comparative catalytic activity of $(\eta^6 - p$ -cymene)Ru(II)-pyridylamine complexes (**[Ru]-1** – **[Ru]-8**) for the transformation of LA to GVL. Reaction conditions: Ruthenium catalyst (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), Et₃N (1 mmol), water (5 mL), 80 °C, 2h.

Entry	T (°C)	Conv. (%)	GVL Sel./Yield ^b (%)
2	70	10	72/6.5
3	80	18	66/11
4	90	26	77/19
5	100	40	83/31

Table S6. Effect of temperature on catalytic transformation of LA to GVL.^a

^{*a*}Reaction condition: **[Ru]-2** catalyst (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), Et₃N (1 mmol), water (5 mL), 15 min, 70-100 °C. ^{*b*}Yield is calculated using maleic acid as an internal standard.

Fig. S2 Arrhenius plot for the catalytic transformation of LA to GVL over **[Ru]-2**. (Based on the data shown in Table S5)

Entry	Base	Conv. (%)	GVL Sel./Yield ^b (%)
1	HCOONa	94	97/86
2	NaOH	92	93/77
3	NaHCO ₃	62	90/53
4	K ₃ PO ₄	83	94/76
5	Et ₃ N	>99	>99/95
6 ^{<i>c</i>}	-	8	98/5

Table S7. Effect of various bases on catalytic transformation of LA to GVL.^a

^{*a*}Reaction condition: **[Ru]-2** catalyst (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), base (1 mmol), water (5 mL), 80 °C, 2 h. ^{*b*}Yield is calculated using maleic acid as an internal standard. ^{*c*}Reaction performed without base.

F =- 4	4 (1 -)		Sel. (%)	
Entry	t (h) Conv. (%		4-HPA	GVL
1.	0.5	52	80	20
2.	1	80	70	30
3.	1.5	97	52	48
4.	2	>99	-	>99
^a Reaction condit	tion [Ru]-2 cat	alvst (2.5 mol%) I A	(1 mmol) HCOOH	(6 mmol) Et ₂ N (1

Table S8. Effect of reaction time on catalytic transformation of LA to GVL^a

^{*a*}Reaction condition: **[Ru]-2** catalyst (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), Et₃N (1 mmol), water (5 mL), 80 °C, 0.5-2 h.

Table S9. Effect of pH on catalytic transformation of LA to GVL.^a

Entre	НСООН	Et ₃ N	nII	$C_{opy}(0/)$	Sel./Yi	eld (%)
Entry	(equiv.)	(equiv.)	рн	CONV. (%)	4-HPA	GVL
1	1	1	6.1	35	43/9	57/16
2	3	1	4.7	95	25/18	75/58
3	5	1	3.6	>99	16/11	84/72
4	6	1	2.7	>99	-	>99/85
^{<i>a</i>} Reaction co	ondition: [Ru]-2	(2.5 mol%), L	A (1 mm	ol), HCOOH (1-	6 mmol), Eta	N (1 mmol),

water (5 mL) 80 °C, 2 h.

Fig. S3 Observed mass data for Ru-formato (**[Ru]-2B**) and Ru-levulinate (**[Ru]-2C**) species for (a) 3:1 and (b) 6:1 HCOOH:Et₃N after 1 h reaction time.

Entry	Catalytic run	Conv. (%)	Sel. (%)/Yield (%)
1	1^{st}	>99	99/85
2	2^{nd}	>99	99/85
3	3 rd	>99	99/84
4	4 th	82	94/71
5	5 th	74	81/53

Table S10. Catalytic recyclability for the transformation of LA to GVL over [Ru]-2 complex.^a

^{*a*}Reaction condition: **[Ru]-2** catalyst (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), Et₃N (1 mmol), water (5 mL), 80 °C, 2 h.

Fig. S4 Catalytic recyclability for transformation of LA to GVL over **[Ru]-2** complex. Reaction conditions: **[Ru]-2** (2.5 mol%), LA (1 mmol), HCOOH (6 mmol), Et₃N (1 mmol), water (5 mL).

Fig. S5 Observed and simulated pattern for [Ru]-2 catalyst after reaction.

Mass and NMR spectra of (η⁶-p-cymene)Ru(II)pyridylamine complexes [Ru]-1 – [Ru]-8

¹³C NMR spectrum of [**Ru**]-1 complex in DMSO- d_6

³¹P NMR spectrum of **[Ru]-1** complex in DMSO- d_6

HR-MS of complex [Ru]-1

¹H NMR spectrum of **[Ru]-2** complex in DMSO- d_6

¹³C NMR spectrum of [**Ru**]-2 complex in DMSO- d_6

³¹P NMR spectrum of **[Ru]-2** complex in DMSO- d_6

HR-MS of complex [Ru]-2

¹H NMR spectrum of [**Ru**]-3 complex in DMSO- d_6

¹³C NMR spectrum of [**Ru**]-3 complex in DMSO- d_6

³¹P NMR spectrum of **[Ru]-3** complex in DMSO- d_6

¹H NMR spectrum of **[Ru]-4** complex in DMSO- d_6

¹³C NMR spectrum of [**Ru**]-4 complex in DMSO- d_6

HR-MS of complex [Ru]-4

¹H NMR spectrum of **[Ru]-5** complex in methanol- d_4

¹³C NMR spectrum of [**Ru**]-5 complex in dmso- d_6

³¹P NMR spectrum of [**Ru**]-5 complex in methanol- d_4

HR-MS of complex [Ru]-5

¹³C NMR spectrum of [**Ru]-6** complex in DMSO- d_6

³¹P NMR spectrum of [**Ru**]-6 complex in DMSO- d_6

HR-MS of complex [Ru]-6

¹H NMR spectrum of [**Ru**]-7 complex in DMSO- d_6

¹³C NMR spectrum of [**Ru**]-7 complex in DMSO- d_6

³¹P NMR spectrum of [**Ru**]-7 complex in DMSO- d_6

HR-MS of complex [Ru]-7

¹³C NMR spectrum of **[Ru]-8** complex in DMSO- d_6

HR-MS of complex [Ru]-8

Spectral data of γ -valerolactone from levulinic acid:

γ-valerolactone (GVL): ¹H NMR (400 MHz, CDCl₃): δ (ppm) = 4.68-4.59 (m, 1H), 2.59-2.51 (t, 2H), 2.37-2.33 (m, 1H), 1.81-1.78 (m, 1H), 1.40-1.39 (d, 3H). ¹³C NMR (100 MHz, CDCl₃): δ (ppm) = 177.28, 116.14, 29.70, 29.08, 21.08.

¹H NMR spectrum of γ -valerolactone

 ^{13}C NMR spectrum of $\gamma\text{-valerolactone}$

References

- S1 H. Mehdi, V. Fabos, R. Tuba, A. Bodor, L.T. Mika, I. T. Horvath, *Top. Catal.*, 2008, 48, 49–54.
- S2 J. Deng, Y. Wang, T. Pan, Q. Xu, Q.-X. Guo, Y. Fu, *ChemSusChem*, 2013, 6, 1163-1167.
- S3 A. D. Chowdhury, R. Jackstell, M. Beller, *ChemCatChem*, 2014, 6, 3360–3365.
- S4 J. M. Tukacs, D. Kiraly, A. Stradi, G. Novodarszki, Z. Eke, G. Dibo, T. Kegl, L. T. Mika, *Green Chem.*, 2012, 14, 2057–2059.
- S5 F. M. A. Geilen, B. Engendahl, M. Holscher, J. Klankermayer, W. Leitner, J. Am. Chem. Soc., 2011, 133, 14349–14358.
- S6 V. Fabos, L. T. Mika, I. T. Horvath, Organometallics, 2014, 33, 181–187.
- S7 G. Amenuvor, B. C. E. Makhubela, J. Darkwa, ACS Sustainable Chem. Eng., 2016, 4, 6010–6018.
- S8 N. K. Oklu, B. C. E. Makhubela, *Inorg. Chimica Acta*, 2018, **482**, 460-468.
- S9 U. Omoruyi, S. J. Page, S. L. Apps, A. J. P. White, N. J. Long, P. W. Miller, J. Organomet. Chem., 2021, 935, 121650-121662.
- S10 G. Amenuvor, C. K. Rono, J. Darkwa, B. C. E. Makhubela, Eur. J. Inorg. Chem., 2019, 36, 3942-3953.
- S11 C. A. M. R. Slagmaat, M. A. F. Delgove, J. Stouten, L. Morick, Y. Meer, K. V. Bernaerts,
 S. M. A. D. Wildeman, *Green Chem.*, 2020, 22, 2443-2458.
- S12 A. D. Dwivedi, V. K. Sahu, S. M. Mobin, S. K. Singh, Inorg. Chem., 2018, 57, 4777–4787.
- S13 Y. -C. Lin, K. -H. Yu, S. -L. Huang, Y. -H. Liu, Y. Wang, S. -T. Liu, J. -T. Chen, *Dalton Trans.*, 2009, 9058-9067.
- S14 M. Carmona, R. Rodriguez, I. Mendez, V. Passarelli, F. J. Lahoz, P. Garcia-Orduna, D. Carmona, *Dalton Trans.*, 2017, 46, 7332-7350.
- S15 P. Govindaswamy, Y. A. Mozharivskyj, M. R. Kollipara, *Polyhedron*, 2004, 23, 1567-1572.
- S16 M. K. Awasthi, S. K. Singh, Inorg. Chem., 2019, 58, 14912–14923.