Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2023

Supporting information

Fig.S₁ FTIR of CoAl-31

Fig.S₂ Overlaid FTIR spectrum of PET (bottom) and BHET (top)

Fig.S3 ¹³C NMR of BHET

Fig.S4¹H NMR of BHET

LDH	Experimental	d003(Å)	d110(Å)	a(Å)	c(Å)	Crystalite
	Co/Al Ratio					size(nm)
CO-Al-11	0.8	7.50	1.52	3.04	22.50	13.0
CO-Al-21	1.9	7.53	1.53	3.06	22.59	13.0
CO-Al-31	2.7	7.66	1.54	3.08	22.98	10.4
CO-Al-41	3.6	7.69	1.55	3.10	23.07	9.8
CO-Al-41	3.6	7.69	1.55	3.10	23.07	9.8

Table.S₁ Properties of Co-Al CO₃ with different $Co^{2+\!/}Al^{3+}$ ratios

Fig.S₅ FESEM images of Co-Al CO₃ with different Co^{2+/}Al³⁺ ratios (A) ratio 1:1, (B) ratio 2:1, (C) ratio 31 and (D) ratio 4:1

Fig.S6 (A) XRD and (B) FTIR spectra of LDH materials with different M²⁺ cation

	Catalyst	Temperat	Time	BHET	Reference
		ure (°C)	(h)	(%)	
1	Co ₃ O ₄	260	1	63	https://doi.org/10.1016/j.pol ymdegradstab.2013.01.007
2	CoCl ₂ (anh)	190	3	65	https://doi.org/10.1007/s105
	CoCl ₂ (anh)/dcype			71	62-016-1897-0.
	CoCl2 (anh)/dppe			53	
	CoCl ₂ (anh)/dppf			31	
	CoCl ₂ (anh)/BEt3			85	
3	Recovered CoO from lithium-ion batteries	196	2	10	https://doi.org/10.1007/s126 49-019-00807-6
4	Co NPs	180	3	77	https://doi.org/10.1021/acssu schemeng.8b02294
5	CoRZnO	196	2	80	https://doi.org/10.1007/s126 49-019-00807-6
6	rGO\[TESPMI]2CoCl4	190	3	95	https://doi.org/10.1016/j.pol ymdegradstab.2021.109691

Table S₂: Comparison of Cobalt containing catalysts for PET glycolysis

7	CoMn ₂ O ₄	260	1	89	https://doi.org/10.1016/j.pol ymdegradstab.2013.01.007
8	ZnCo2O₄	260	1	89	https://doi.org/10.1016/j.pol ymdegradstab.2013.01.007
9	CoFe ₂ O ₄ @ZIF-8/ZIF- 67	200	1	84	https://doi.org/10.1016/j.fuel .2021.121397
10	CoFe2O4	195	2.5	73	https://doi.org/10.1016/j.eur polymj.2021.110590
11	CoFe2O4/C10-OAC	195	2.5	96	https://doi.org/10.1016/j.eur polymj.2021.110590
12	Mechano chemically prepared CoFe ₂ O ₄	190	6.0	77	https://doi.org/10.1016/j.cej. 2022.137926
13	Co Al 31	180	2	96	This work
13	Co Al 31@Fe ₃ O ₄	180	2	99	This work

Fig.S7 FESEM images of (a, b) CoAl-31 LDH and (c, d) NiAl-31 LDH

Table S₃ Comparison of Magnetically separable catalysts for PET glycolysis

	Catalyst	BHET	Temperature	Time (H)	Reference
		yield			
		(%)			
1	Superparamagneti	90	300, 1.1 MPa	1	https://doi.org/10.1039/C3G

	c γ-Fe2O3 Nanoparticles				С41834К
2	γ-Fe ₂ O ₃ /nitrogen- doped graphene hybrid material	100	195	3	http://dx.doi.org/10.1016/j.p olymdegradstab.2017.08.033
3	Fe3O4@SiO2@(mi m)[FeCl4]	63	170	24	https://doi.org/10.1016/j.apc atb.2019.118110
4	γ-Fe ₂ O ₃	40	195	3	http://dx.doi.org/10.1016/j.p olymdegradstab.2017.08.033
5	h-BNNS with Fe3O4 nanoparticles	100	200, in autocalve		https://doi.org/10.1016/j.pol ymdegradstab.2019.108962
6	Fe ₃ O ₄ -boosted MWCNT	100	190	2	https://doi.org/10.1039/C6G C00534A.
7	ZnO–Fe ₃ O ₄ magnetic hollow micro-sized nanoaggregates	92.3	190	0.5	https://doi.org/10.1039/D3G C01762A
8	Mg-Al-O@Fe3O4	31.4	240	1.5	https://doi.org/10.1016/j.wa sman.2021.03.049
9	two-dimensional FeIII nanosheets	100	200	0.5	https://doi.org/10.1039/DOR E00385A
10	Fe3O4 nanodispersions	93	210	0.5	https://doi.org/10.1021/acss uschemeng.3c01206
11	Fe3O4-CP	93.5	190	2	https://doi.org/10.1039/D3G C01707A
12	Coal @Fe3O4	99	180	2	This work

Table S₄ ICP-AES analysis of Co-Al 31@Fe₃O₄

Element	Wt.% (from ICP-AES)
Cobalt	29.8
Aluminum	4.7
iron	18.2