Electronic Supplementary Material (ESI) for RSC Sustainability. This journal is © The Royal Society of Chemistry 2023

Supplementary material

S1 Cement sectors in BC, including technology or process type and name, description & solutions, state of development, GHG impact, energy impact, Cost, and reference type with its reference link. (PICS' research project: Technological Innovation and Climate Policy Solutions to Achieve Net-zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy impact	Cost	Reference type	Reference links
Cement	Current Technology	Portland Cement	Calcium compounds, silica, alumina and iron oxide are placed in rotating kills at 1500C.	Current Standard	0.5372 tCO2/t of clinker	5.62 TJ/t clinker			Canadian Industrial Energy End Use Data Analysis Centre (CIEEDAC). http://www.sfu.ca/cieedac.html
Cement			This report has been prepared for the Department of Energy and Climate Change and the Department for Business, Innovation and Skills				Uncertain	Industrial Decarbonisation & Energy Efficiency Roadmaps to 2050 Cement	https://asetia.ack/linking.service.gov.uk/ba vermment/uploads/pystem/uploads/attach ment_data/fie/py6/sylCement_Report.pd f
Cement -Lafarge Canada Inc. (Richmond)	to replace view aggregates with a rescrict aspath generates (BAP) mix. One of several circular initiatives, the process of replacing vigin aggregates with rescrict another the spectrum significantly dominates the deplacition of natural emissions while downing trackloads of asphalt from landfile.	PUASE I — The Contamisent Program Reduct harmfor degrade and incognic solutionses, such as solutive deside, bare and social as version as using the control and social as version of howings? Capture Program Separate the CO from the gas using a contomized decrement version of howings? Conformed and the control and the solution of the control CO for more and support the scoromical assessment and demonstrations of CO, conversion technologies notify, such as CO, injected concrete and fly ash.	Solicion: a Boookin use a fuel is censel manufacturing at the Schmood glant (nextwol rgs,soc) in funding for the capital investment in a silo designed to co-proces boookins is low catabon feel for the Michinova censers (it) is a Project COMBRF (File gas from the glant's manufacturing facility is non capital mologic Sarati segment - relating particle to compare the logical segment - relating particle to compare the gas by trapping (its contaminants to marks an efficient of a durals (CO capitant) process. Now that Phase III underway, Phase III - demonstration of CO2 dilatation solutions sub a relefacting in the low cardon fully. CD2 concern, and fly acti – will begin in 2020.)	Pilot project (inventys Patners with Total and Lafarge to Bring Carbon Capture Togaran to British Columbia)	Bincliffs, when registing call, will reduce Grids by approximately 5,000 tonnes of CO2e per year	Along with carbon capture, the plant uses a 538-million system to use non- recyclable waste as feel, directing it away from BC landfills.	Uncertain	Website report : https://www.iafarge.ca/en/inve nsys_partners-total-and- lafarge-bing-carbo-capture- program-british-columbia	hatan Journe Lafarga, sakenlorojest. coannes
Cement - Lehigh Hanson Materials Ltd. (Delta)	Reducing the proportion of clinker is the most important level when it comes to minimizing energy consumption and CO2 emissions		Solutions: 1. Development of alternative clinker: 1. CCU/CS. 1. Developing composite cements that costain less clinker.	the clinker proportaion in cement in 2029 is 74-5%	22% actived in 2019 and by 2030 will be - 30%	-15%	kg CO2 emission per tonne of cement in 2029, 589.8	Suztainability Report 2029 (page 35)	https://www.heidelbergcement.com/anly/ stemfiles_forcelasesteldocument/galigh edelbergcement-autainability-resour- 2016.pdf

S2 Pulp & Paper sectors in BC, including technology or process type, description & solutions, state of development, GHG impact, energy impact, cost, and reference type with its reference link. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy impact	Cost	Reference type	Reference links
Domtar Inc.	Chemical Pulp Mils-The manufacturing of pulp and paper requires wood fiber, chemicals and energy	Chemical Pulp Mills the conversion of Addown mill to acol4 softword and Miff pulp in enty acas. Addied and olitarithe limitetate cores an highly columnal withining and tachining development, qualification and also process.	Kamoops MII (SFO), one live Fiberline Puly Capacity and Lacloos ADMT (an air dry metric truth). The fiber used at Kamoops July mill all softworks, disriputing moshy from their and the softwork of the softwork of the softwork of disriputing and the softwork of the softwork of the disripution of the produces its call the softwork of the province of Quebec has a generhouse gase. "GMG" (cap and- trade system with reduction targets.)	Commercial. All of our pulp production capacity is located in the U.S. or in Canada, and we sell approximately gake of our pulp to other countries.	Grand Total t CO2e - 232746557	Energy sources include biomass, matural gas and electricity, rylk of the total energy required to memory the source of the total and speet polong liquor, generated as byproducts from our manufacturing processes. The remainder of the energy comes from smaller armoust of other focal facils and parchased electronic sources and the sources contracts.	British Columbia has a carbon tax that applies to the purchase of fossil fuels within the province.	ANNIUAL REPORT FOR THE YEAR ENDED DEC 31, 2020	https://www.domtar.com/drassfafa/df/lie status.co/domasfafator.is.com/ara.e.adf
Howe Sound Pulp & Paper Corporation	Kraft Digester, blach plant and utility island+ NBSK Pujo- 455,000 tonnes per yaar Deng-aag port failur for economic access to Pacific Rim economics access to Pacific Rim economics access to Bach green power reported to BC's grid* Caccaal BC fore supply dominated by sawmil residual chips and pulp logs	Chemical PulpMills. The Paper Excellence Howe Sound Pulp and Paper facility is a leading produce of high quality Nothern Blowhold Softwood Finds pulpe.	SO 14,003 environmental management system certifieldy.N of HSPP seeings comes from memorable sources with <i>A</i> (<i>b</i>) reduction is greenhouse justs are system of the source system is low relaxation for the Crisica assume representation of the site on relaxation for SC risk assumes representation for the standards.Structure emission standards on the BC coast.	Commercial	Grand Total t COxe = 2446658			Fact Sheet 2020	https://papersocilience.com/mili- location/howe-sound/
Carofor Pulp Ltd. Prince descripe Pulp and Paper-Intercontinental Pulp Milis	Enhanced - ECF Process- Otenrical Pulp MMs. A samilleneity-modelling project was instructed that will ulmainly have energy module EC - samellin a suscess and will be able to account for the electricity association make by individual progets. Biomass and clean electricity	SR. Using Technology to Enhance Operational Efficiencies Page 6, Page 7, Page 9, Page	17 manufacturing Facilities in BC-a guidy mills in British Columbia. Three of the puid mills are in Prince George and produce permittin reinforcing northern softward MHM (DSC) puid. WymrWood mill in this Columbia as certaint to SFI CoL and will be transmitted to SFI CoL and a softward to SFI CoL and will be transmitted to SFI CoL and a softward to SFI CoL and will be transmitted to SFI CoL and the SFI CoL and will be transmitted to SFI CoL and the SFI CoL and will be be transmitted to SFI CoL and the SFI CoL and the SFI CoL and the certaintian (CoL Schooles Samell Team Columbia) that the SFI CoL and the permany heat sources in Berl Kinz, SFI PUE MLL, BIOEREROY, BIOYLL, BIOERER, Col Col has planted to a Self SFI CoL and the permany heat sources in Berl Kinz, SFI CoL and the SFI CoL and the DOVICE, SFI COL Col has planted to SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the second the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the second the SFI CoL and the SFI CoL and the SFI CoL and the SFI CoL and the second the SFI CoL and the SFI CoL	increasing kiln capacity at a number of operations, this causes an increase in energy community, again and electricity, natural gas and electricity.	Grand Total (COre - 118/b23) GMG emissions increased from 129 to 23 a kitosones. savenils reduce d GMG emissions for direl a gascine, pregute and emissions in crossed by three kitotones (=>40) in 209 do to increased natural gas comunitytion	behavioual charges, automating specific processes, and capital projects that have been shown to readvace energy counting on and lower energy costs. Canlor Pup Inductivial incorta Program (2017), a Generation of BLC-kelo intakive that contributes to cleaner industrial operations across the province by readvacing automatic costs for mortical leading emissions benchmarks. T Carfor continues to sure Lagoo megiawathours of electricity annualy enough to power Lago home such year.	facilitates emission reductors using carbon tax that industry pays above syp per tome carbon dioxide equivalent.	2019 Suttainability Report CANFOR AND CANFOR PULP	https://www.camfor.com/doca/dofaate. source/bricardio-andra.adoca.uda. source/bricardio-andra.adoca.uda. source/bricardio-adoca.u.a
Canfor Pulp Ltd. Northwood Pulp Mill	Enhanced - ECF Process- Chemical Pulg MIIs. A sawnill energy modeling project was initiated that will utimately have energy models developed for all of Canfor's B.C. sawnills in 2020, and will be able to account for the	Product Description 500,000 admity Premium Bleached Softwood Koaft Pulp	sarely of the filter sources from non-nontrovensial forests, spit of the filter to contribute to extrainable foreers paradiceles. Cardior help has appendent to instruct and on these separates in a polytoce with all our filter asymptotic to a setter source from have been assessed as low risk under the FSC Controlled Wood system.	All fibre is harvested from sustainable forestry operations in the Prince George region.	Grand Total t CO2e -1487002	As described above (Canfor Pulp Ltd Prince George Pulp and Pape)	As described above (Canfor Pulp Ltd Prince George Pulp and Pape)	Northwood Pulp Mill Environmental Product Declaration Sheet 2020	https://www.canfor.com/docs/default. source/tode/northwood_april.com/ir.odf/s form-drawega_a

	electricity, and Biomass								
	electricity, and Biomass								
Cariboo Pulp and Paper Company	Chemical Pudp Mills Acquisition of Peace River, Cariboo JV interest and Santand in 2018 and Mercer Forestry Services in 2020 Ramp up of Priesus sawrill to capitalize on high-return opportunities and alternative market capability • Optimization of bio- extractives production	golk joint verture stake in reliable NBSC mil stakable wood spiply sourced from large local stakable wood spiply sourced from large local sources from generation generation generation to contrary a JMM back generation and a 3 MW conducting a JMM back generate electricity for sale to BCHydro	Location: Queenel, Britsh Columbia (-6go km north of Varcover) • Restrictions capacity 120,000 tomes ray year NBSK • Controlling of the second second second second second • controlling of the second second second second • accord green electricity sales: \$5,4 million	Commercial	Grand Total t CO2e = 1318150	170,000 tomes NBSK 28.5 MW energy	Uncertain	Investor Presentation Report Feb. 2023	https://www.westfaser.com/responsibility zemensonentibili.ghus
Catalys Roper Corporation Powel River Division	West coast's largest specially apper machine (-) • Deep say port faulting with states of the art open bolier and watte wattr trastment - Initing sackarding papers. 33,000 tomes per year - O coastal & Cite supply dominated by sammill residual topis and puby logis - Saff-generated green power export to BC's grid	Mechanical Polg Mills The Paper Excellence Powell Nove mill is a leading producer of high-quality reverpoint and uncoated mechanical speciality papers.	ISO Loos environmental management system certified syste of the mill's energy comes from enervale sources with ryble reactions in selection as a single net excess, ryble of the province is and generated gene networksy assessment process - contribute SIS Plans Sourcing, FSC Controlled Wood, PSC®, PEFCTM and SIP Chain of Costody	Commercial	Grand Total t CO2e - 671467	under research	Less	Fact Sheet 2020	http://paperarcellence.com/mill. location/powell-inter/
Catalyst Paper Corporation Crofton Division	Chemical Pulp Mills Catalyst Crofton Mill today has two paper machines and two pulp lines. Paper Encellence: Catalyst Crofton Mill is a combined pulp and paper combined pulp and paper sopply dominated by sammli residual chips and pulp logs	Its unique deep-sea port facility provides an economic gateway to major marketing in western North America, Asia and Latin America.	ISO Lupos environmental management system and ISO goos energy management system certified Byte of the mill's energy consist from resolute sources with 75% induction is imperiationage assis rise 23% induced in the source of their model fiber is low risk using the FSC risk assessment process Certified to SFI Rine Sourcing, ISC Controlled Wood, FSC®, PEFC® and SFI® Chain of Cutody standards.	Commercial	Grand Total t CO2e –1674233	under research	Uncertain	Fact Sheet 2020	https://papersocilianes.com/mills leastion/confront
Catalyrt Paper Corporation Port Alberni Division	Newsprint Mills. Catalyst Port Alberni Mill was the first British Columbia mill to integrate readuals from sawnilli. Directory and coated papers: 35/oco tones per year Cosstal BC fibre supply dominated by Jawmill readual chips and pulp logs	West coast's largest coated paper machine and uncoated groundwood paper machines Statu- or-the-art mechanical pulping, utility sland and wante water treatment	ISO 14002 environmental management system certifiedgy% of the mil's energy comes from networked sources with Byth reduction is granthoose gases to say system of their power cas is a minimum of the source system of the source sources and minimum of the sources of the source sources and the Sources, PSCP, PEFC ^W and SPIP Chain of Custody standards	Commercial	Grand Total t CO2e =427724	under research	Uncertain	Fact Sheet 2020	http://pagemectlence.com/mill- location/nof-albern/
Skookumchuck Pulp Inc.	Chemical Pulp Mills Skookumchuck Pulp has seen substantial modernization work making the mill one of Paper Skeellenec's most sophisticated facilities.	The Paper Excellence Slookumchuck Pulp Mill Incorporated facility is a leading producer of high quality Northern Bleached Softwood Kraft pulps.	galls of the mil's energy comes from renewable sources with 69% reduction in greenboxes gases since 1990 ryfe of power use is will generated green electricity sould will enote the sourch kaning the FCR in assessment power of the SPC and PEFC ^{III} Chain of Custody Centified to FSC® and PEFC ^{III} Chain of Custody	Commercial	Grand Total t CO2e – 986342	under research	Uncertain	Fact Sheet 2020	https://paperexcellence.com/wp- content/uploads/pozo/21/Skookumchuck- Pulp.pdf
Mackenzie Pulp Mill Corporation	Chemical Pulp Mills The company says all gaseous, legula and solid chemicals, and readous have been safely removed from the Mackenzie mill site		The company says all gaseous, liquid and solid chemicale, and residues have been safely removed from the Madaxenice mill site. Paper Excellence Canada will be containing operations at the pulp mill in Madaxense. Mechanise Pulp Mill Corporation is located in Madaxense, IC, Canada and Is part of the Montile Exponen- tion in million (SC). Gladin Ruper a mediate). There are que companies in the MacKensie Pulp Mill Corporation corporate family.	Commercial	Grand Total t CO2e – 6gy6yo	under research	Uncertain	ochuł	https://www.eninceseonacitium.com/bca i-mes/paper-excellence.closing. mackencie.pulp.mill.gzaofaz
Marcur Gdga Limited Pathership	Chemical Pulp Mills	Itorisaad ngply of speech beetle damaged wood - Prine beetle and historic currentting resulting in annual out reductions across BC - Recent forest fires in Canada - Transportation bottlenecks	Sostainable products for a subin conscisue planet. Solid read products produced from sustainable sourced, certified, private and public individuel in - Productus read in Construction and renovation and uses - Displacing higher action footprint sources and steal alternatives Nop poolscip produced from word water materials such as low quality front store and certificable from sameline. Solid areas alternatives to place produced from word water materials such as low quality front store approxy produced from the pup d dennical receive process. Self support or spectra electricity and all angles – Genes electricity capacity is displacing coal based electricity in most junctifications. Residual atteam eliminates food fail wave Displaces placetation perioder from rensin and natural and if word- Displaces placetation publication.	Commercial	Grand Total t COxe - 1330796	under research	Utcertain	Investo Presentation Report Pelh 2023	Ettas-Descensenendo net hull 72.53.521 es: 166 multimolosis contexpo contentistalendo contexpo contentistalendo contexpo estas contexpo Reprint de
Nanaimo Forest Products Ltd.	Chemical Pulp Mills	In south Homms Partic Installed a Oxforde Davide (CD) light dimetances and agore suppression system. This system is designed to contain and growert any large release of Choinne Davide tarwood impact the surrounding environment.	The laterum cell (products high quality latel pulse made from cattern block of Douglas FL, watern hanning, balant FL, interior SFR and water part, the mill swell will instant for cost effective export of pulse and water part, the mill swell will instant for cost effective export of pulse and works the strange sector as a word filter. Harmar Pucht's program is supplied by Soperior Program. Soperior Program outside the strange sector block sub- stant sectors and the strange sector and the strange block of the Suppress Program is supplied by Soperior Program. Suppress Programs are strate technicum.	Commercial	Grand Total t CO2e = 1283000	under research	less	The company website	ktisellenne hermsepselle eonieneisen entsche
Celgar Mil	Oversial Puly-MIN: These projects have helped to make calgor a state: in the global poie industry. The mill produces approximately son,conce tomes of Hertherm Bischards Golvows Graft puly- enough sco-certified green energy to apply our own meets plus out to an addition meets plus out to an addition liters of tuperine annually, making it one of the main employers and accountic generators for the region. http://interestric.com/generation numerce-celgar/	Project Blue Goog, 2007 - 8.15, etillion capital proper improving generation efficiencies, increased production, end improved environmental performance. In orasy, we improved production by detotterencing the pub perkaging line, s.e. well as sub all targetime extraction plant to generate sales and reduce chemical costs.	Location Castlage, BC, Gauda Li Goal meant of Vancouver) Hulp instruction capacity cys. and tomes per year NIBSI: Lifestricity generating capacity to zoW Londingtone ISO year and Lucos. Loso gene effective sales: to ag million Loso be estractives sales: to ag million Loso be estractives; sales: to ag million Loso be estractives; sales: to ag million Loso be estractive; sales: to ag million Loso durating the comparison of the sale of the sale Loso durating the sales of the sale of the sale Loso durating the sales of the sales of the sales Loso durating the sales Loso durating the sales of the sales Loso durating the sales of the sales Loso durating the sales of the sales Loso durating the sales Loso durating the sales of the sales Loso durating the sales of the sales Loso durating the	Commercial	Grand Total t CO2e - 134,2048	530,000 tones NBSK 100 MW energy	less	Investor Presentation Report Feb. 2022	http://www.envendoronet/ball/2221122/ go.zdf.mr/monologi.com/2020 contention/enventora-Machine.acae Contention/enventora-Machine.acae Reamond.James.institutional.avestora- yfinal.pdf/time=slocothasil

Peace River	Harmac Pacific's propane is supplied by Superior Propane. Supportor Propane provides the storage vessels fueling systems, Maintenance and servicing of this equipment is also provided by Superior Propane's service technicians.		Growth is areas of core competence * Acquisition of Peace Brow, Cashoo JV interest and Sastand in southead Mercer and Cashoo JV interest and Sastand in southead Mercer capitalies on high-return opportunities and attenuits market capitality of Optimization of bio-extractives production	Commercial	Grand Total t CO2e = 240582	475,000 tonnes NBSK/NBHK70 MW energy	Uncertain	Investor Presentation Report Feb. 2021	https://tecurrentich.net/piil.21.23.22/ ap.11%.mtfpsplaad.com/no. controllar/additio222/2022-02. Rammod.Jame.Intertational American American James Intertational American yfinal.pdf/time=diaphpail
West Fraser	• 100% Timber supply chain certified • 52, 4 Million native tree seedings planted in 2013 • 100% Harvest sites reforested • 1313 Allion invested 10 improve forestry and stewardship	West Fraser has invested in Low Consistency Refining technology in our operations, reducing the electrical immediation on a CFDM millibly zBM per ADMT (an-dired metric (cone) since 2005	75% Renewable energy, 13% Reduction of GHG emissions in 2005, 94 William tomes of CDas stored in products, 93% of a log recovered for product, purpose or energy	Commercial	9.4 million CO2e stored in long-lived wood products made in 2029	Electrical costs for mechanical pulping processes can make upas much as gived of the manufacturing expenses for BCTMP pulp.	less	West Fraser 2019 Responsibility Report	bitas lleven vestfaster combinedédenkt finsknatisaktir úlvest kardenarik assos oktosik sponskik rikuskaportika Samm aru sel

S3 Aluminum sector in BC, including technology or process type and name, description & solutions, state of development, GHG impact, energy impact, Cost, and reference type with its reference link. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy impact	Cost	Reference type	Reference links
Rio Tinto Alcan Inc. Milning located in Kitimat, British Columbia	Scope 3 goals are to — Work in partnerships to develop breakthrough technology enabling the production of zero carbon aluminum — which in partnerships and invest in technologies that could alwine microbios in selentialized carbon iterating of all and 200K from 200K — the could alwine microbios in selentialized carbon iterating of a law 200K from 200K — technical partnerships with could be always be before the partnerships of the select action neutral international partnerships by 2000. — Meet our ambition to reach net exeremissions from hipping of our products by 2000.	ELYSS joint venture with Alcoa achieved production of commercial pred zero-carbon aluminium and completed the construction of the first industrial pilot facility in Canada.	With dean hydrogower facility at Kemano and the Nechalo Reservor, the Kilmat smelter produces aluminium with one of the lowest carbon foroprints in the world Page 5. No Thirds and Aloxa Corporation today amounced a revolutionary process to make aluminium that produces object and imitativa all directionary processors for make aluminium that produces object and imitativa all directions are produced as the analysis of the aluminium statistic process. https://www.notifici.com/informs/inforus/info	There are three main themes for the research that will be delivered through the C\$1.5 million funding from NSERC	reducing the emissions intensity by 50%	under research	Since 2018, we have reduced Scope 1 and 2 emissions by 1.1Mt CO2e, or 3%	RT-Climate report 2020	httes://www.sistienc.com/en/s yntainability/climate.charge

S4 Mining sectors in BC, including technology or process type and name, description & solutions, state of development, GHG impact, energy impact, Cost, and reference type with its reference link. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy impact	Cost	Reference type	Reference links
Mining BC			Coal mines emit Versifation Ar Methane (VAM) at concentrations of 23k. However these are significant source of emissions. This technology atalytically axidises methane before carbonating and calcinating an a full-action of the site study turning Methane into CO2 and then capturing CO2.			Energy used by the industry is estimated to be between 1.25% up to 11% of the world's total energy consumption, depending on source	Reduce the carbon intensity of our operations by 33% by 2030	Forsight website: Report	https://firenalstrac.com/sec common/passabl/22009/07CC_ Money_EnalSoft_StauDated
Teck Coal Limited	Bituminous Coal Mining-Elixiew Operations	Teck has a 95% partnership interest in Eliview. Production 9.0 million of clean coal. Proven and probable reverse at Eliview are projected to support mining for a further 30 years.	using heat exchangers (by ethane combuston) to produce electricity. This results in a higher efficiency burning as well as turning a source of emissions into useful product.	Commercial, little penetration of electric vehicles in mining	Grand Total t CO2e =458448	Uncertain	Reduce the carbon intensity of our operations by 33% by 2030	Teck website	http://www.teck.com/operations/ransdal operations/filt-view/
Teck Coal Limited	Bituminous Coal Mining-Fording River Operations (FRO)	Targeting wash plant optimization in FRO—a key step in the steelmaking coal processing cycle—by creating an operator advicory tool that recommends ideal set points in the wash plant, based on an analysis of incoming material and historical data.	Improving productivity and efficiency through cutting edge technology including: Matchine learning predictive matteraance on mobile equipment Mining analytics improve haid cycle times -Processing improvements driven by artificial intelligence -Connecting data systems to improve blait and showl performance	Commercial, little penetration of electric vehicles in mining	Grand Total t CO2e =573128	Uncertain	Reduce the carbon intensity of our operations by 33% by 2030	Teck website	https://www.teck.com/operations/canada/ operations/fording-mer/
Teck Coal Limited	Bituminous Coal Mining Greenhills Operations	the advanced sensing and analytics have also unlocked additional value, by identifying improvements to the hitcherer process, allowing the FW analytic plant to process additional coal from Generaliti Operations, thereby optimizing its processing capacity.	Reduce files carbon intensity of our operations by 33% by 2020 Procure 30% of our description planname. From clean energy by 2023 and 100% by 2020 or do the second second second second second second second transmission of the second second second second second transmission of the second second second second second intensity at our Fort Hills mine compared to US refined barrels of oll	Commercial, little ponetration of electric vehicles in mining	Grand Total t CO2e =468459	Uncertain	Reduce the carbon intensity of our operations by 33% by 2030	Teck website	http://www.teck.com/geration/arada/ occution/perchild
Teck Coal Limited	Bituminous Coal Mining Line Creek Operations	Line Creek produces steelinaking coll - also called metallingical coaline cosing coali - which in used to make steel, Alos, involves the subjected of the steelinaking coaline men west to bulk port terminals in Vancouver by rail. It is then loaded on to larger reaging vessels, which carry it to our target markets.	Teck operates the Highland Valley Copper mine in British Columbia.	Commercial, little penetration of electric equipment in mining	Grand Total t CD2e +216720	Uncertain	Reduce the carbon intensity of our operations by 33% by 2030	Teck website	https://www.teck.com/operations/canada/ operations/line-creek/

S5 Oil & Gas sectors in BC, including technology or process type and name, description & solutions, state of development, GHG impact, energy impact, Cost, and reference type with its reference link. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy Impact	Cost	Reference type	Reference links
Partland Refining (B.C.) Ltd	Plud Catalyns Carding (YKC [*])	Fluid catalytic Cracking is the chemical process that utilizes a catalyt and heat to break long- chain hydroxinflore into John et al. (a) hydroxinflore into John et al. (b) have long and provide the set of the set of the logical petroleum gas.	Developing Furliand's overacting sustainability strategy and policy, as well as the imaginal report from the Task Proce on Climate related Transical Disclowers (TDT) and gold sense from the transmission of the transmission of the transmission of the Glinak Reporting Res (GLI). LLONG CLINACIES. Explorition of remeables, for each roles has the dedata could a state and cancel, are considered carbon neutral feedbacks for the transmission cancel, are considered carbon neutral feedbacks of the transmission cancel, are considered carbon neutral feedbacks of the the under cancel, are considered carbon neutral feedbacks of the the under cancel are considered carbon neutral feedbacks of the the under commitment to lower-carbon backership, on Aken 1, 2021, Nether to co- commitment to be constant and the decomment of the ther measures. The carbon offset with discuss and or or DOINBERT Research program to help customers offset ther gas capture and utilization progens to Higging, Directo.	A higher throughput indicates increased opposed in a numericated and our contravel development and internet/ fuels and technologies.	Grand Total t CO2e = 417960	greehouse gas emissions reduction tagets in next Sastandality Report in the fourth quarter of 2021	implementing a minimum of 70,000 metric tenness of CO2e of emission reduction projects by 2025, electrification of the Dawson, Parkland, and Sumrise facilities	Sustainubility Report, September 30, 2000	http://www.parkland.cs/application/liles/ 4516/036/254/Parkland Insugural- Sustainability Report 640 pdf
ARC Resources	Conventional OII and Gas Extraction	ABC's Durson Phase III and 16 footby was designed to be low emitting using watch heat recovery tas the capacity to reduce up to 78,000 ECD2# annually.	Carbon Prong, AAC engages directly with the Alberts and Bittah Galambia provincial governments and particulate in efficications with representatives of federal and provincial governments through nearing and working level committee of the Canadan Association of Petroleum Producers on cost-effective emission relations. AR-folder the position that devide and provincial carbon tasks and emission regulations must be replemented in a way that denaum reductions are ensatingly, in accurate and enfective while maniforming the competitiveness of the Canadan energy actor.	Improved regine efficiency is an opportunity for ARC to lower Its cost structure through reducing our structure through reducing fuel usage.	Grand Total t 6524 +359539	The new Dawson Phase Nr facility integrates satisfages technology Enhances energy efficiency of gapowered turbines and reduces emissions by 45,800 ICO2 e annually	reduction in carbon tax obligation by 59 million annually by 2021 - substitution of hydrolectricity for natural gas used in power generation, revenue generation, revenue generation through the sale of carbon offsets, and reductions in operating costs	E56 Heport, 200	https://www.arcensures.com/asset/odf/ ddf:-Besarres.itd2020.ISG-Besot.pdf
Canadan Natural Resources Limited	Conventional OI and Gas Extraction	the acquisition, reploration, development, production, marketing and sake of crude oil, natural gas and Mola. Page 11	As part of the Company's origining focus on technology and innovation and the relaction of its environmental footport, the Company has previously implemented and contraines to undertaken to utilization opposet, to include relaction and adjusted on tentheme. CO2 capture from hydrogen plants, and research into the production of bodynet for adjust and adjust of the company institu- renewable energy sources at remote locations, where appropriate. Fage 11	may be, affected by political developments and by national, federal, provincial, and local laws and regulations such as restrictions on production, changes in taxes, royaltes: amounts payable to governments or governmental genetics, price or gathering rate control and environmental protection regulations.	Grand Total t 602e +1124124	January 1, 2020, the CCR was replaced with the Technology innovation and timisions Reduction Regulation (*TRR7) rage 14	The BC gov, will be increasing the carbon tax at a rate CO2e annually to SSD per tonne of CO2e on April 1, 2021. Page 15 Update: BC Carbon tax reach SSO on April 1, 2022	ANNUAL INFORMATION FORM FOR THE YAR INDED DECEMBER 31, 2019 published March 27, 2020	bites // keek.com/ com/usikes/threads/1/238/ 02/all meech, 27,2033.edf
EnCana Corporation	Conventional Oil and Gas Extraction		Dwitch rise, formenly lincara Corporation, is a hydrocofton exploration and production computing organical in Decker and the second second second second second second second headquartered in Calipra, Alberta, and was the largest energy company and largest natural gas producer in Canada.		Grand Total t CO2e -987348			News	https://elobialnews.ca/news/6659797/enca pa-consoleters-outliv-rebrand-denver, suttles-energy/
NorthRiver Midstream Inc.	Conventional Oil and Gas Extraction	NorthNewr is building a different energy infrastructure company, leveraging our assets and talented people to deliver new and innovative solutions for our customers.	Northiver Midstream is a Canadian gas gathering and processing busines. With operations in Initiali Calumba and Alberta, Northiver provides concrectly for its caluments transportemend market including the U.S. Pacific Northwest, U.S. Midwest and Western Canada.		Grand Total t CO2e =417803			website	http://www.rem.calenergy.done_ differently/
PETRONAS Energy Canada Ltd	Conventional OI and Gas Extraction	Pactic NorthWest ING was a legander durural gas export facility proposed to be statuted on Lefu lacid in the Diamics of Pice Takaka, it in worthwest lacid in the Diamics of Pice Takaka (North West majority-canned by PTINDNAS	The company is carrently drilling the fourth well on its first "start- qr" pair and the second well is already faster than any of its other 500 Montony wells. Current one production is just under "NDDO the new pairs of the second second second second second the new pairs are an assaurch tablady range to a to 150 Casulas ontream date in 2023/2024. Solutions: Develop well are caracter fastary areas to a solutions: Develop well areas caracter fastary areas before and the second second second second second second performance of the second second second second second performance and and in a specification. When the second second from operations and in operations. While off second second from operations the output of the second second second second from operations through energy efficiency improvement and use of low carbon energial estimations such as natural gas and menerable energing		Grand Total 1 CO2+ -543546	PTTROMM is pleased to announce that its wholly-owned entity, the North Monthey ING Limited Into a Perchase ad Salar Agreement Into a Perchase ad Salar Agreement for an equity position in the ING Canada projet and Salar Agreement Columbia, Canada.		website	bitas //www.astranas.com/watanabita/is et. wwp.cation.emiasions
Spectra Energy Transmission /Enbridge	Conventional Oil and Gas Extraction		all forms of energy—crude oil, natural gai, renewables—to meet raing global energy demand. As a company with both pointer and wind trabutine, thorophysical solutions are graved and the trabutine, thorophysical solutions are graved and the taxe. Renewable Energy: more this /3 Julion in capatel or generation or under construction. Our green energy portfolio includes 23 with graving. You're energy gravitolio. S vauk heat recovery facilities and 1 genthemail project, and with e equanding our presence in European offshore wind. Fage 4		Grand Total t CO2e =2692139	5,080 MW GROSS 2,075 MW NET of zero emission energy generated (polyces currently in operation or under construction)		Enbridge's economic impact on British Columbia	<u>http://www.enbridge.com/r/media/trb/b</u> comment/f.strbett/Thom/web/inf.com machenells/2008Cr.com.of/Jeen
Tournaline Oil Corp	Conventional OII and Gas Extraction	20% reduction in methanic emissions by the end of 2020 based on 2018 figures • 20% reduction in corporate emissions intensity by the end of 2027 (scope 1) based on 2018 figures	Tourmaine is Cranada's larged producer of natural gas, which is the cleanest hydrocatoch fuel. Tournaline is also a member of the Natural Gas knowstor fuel (NoII) allowing Tournaline to participate neurolines (RAS projects isolating GelXas for using addites to identify largient enthusen entouch on this Calumbia Montery Calumbia and the second of the addity to see natural gas intrade of lensel. Raitman technologies that are building and testing a combined cipic direction and direct allowed of lensel. Participate and direction and the second participate allow for area methane well site by providing both electricity and compressed affor pre-matic controls, and many more exciting opportunities. Page 26		Graed Total I CO24 =427722	Created an internal Energy fillcency Traik Force to ensure Tournalne is using the best technology to improve our emission footprint. <i>GD</i> million tornes induction in global ensurons per year:	9.8 million/annuall litres of diesel to be displaced [51] million in savings per year], Reduction: emissions emissions emissions emissions emissions emissions emissions emissions emissions emissions emissions emissions	The future is blue and green Soutlandelity Report 2019	http://fournaline- sustainability.cdn.promc.in/tournaline- sustainability.23443923-eet4-49564855- f6373752634_2029-fournaliner-Sustainab ilky=Report+Final.pdf

S6 Carbon capture technologies based in BC and Canada, including technology or process type and name, description & solutions, state of development, GHG impact, energy impact, cost, and reference type with its reference link. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada)

Industry	Technology or process type	Technology or process name	Description and Solutions	State of development	GHG impact	Energy Impact	Cost	Reference type	Reference links
	Existing/under development	Existing/under development	This needs to be applored for each branch of industry, e.g. cement, steel, aluminum, refinences and future biorefinences	Parts are tested and proven but "systems" not, especially in an industrila setting	5 to 99% capture, all depends on choice of capture technology and scope of capture	increases heat demand /or electricity demand (in case of oxy process)		UNIDO Roadmap & peer reviewed article	http://www.unido.org/env/comment/05311 golindustrial.energy.efficiency/releated project//arthon-apture-and-storage industrial.sector-readmap.html
ccs	Existing/under development	Existing/under development	Review article on	Varying between R&D, pilot and commerical	5 to 99% capture, all depends on choice of capture technology and scope of capture	Increased energy deamdrs for process	\$10.\$130/tonne COZe avoided	Peer reviewed article	See Leesan, D., Fennell, P., Shah, N., Petit, C. & Mar, Dowell, N. A. Techno-economic analysis and systematic review of orthom- captures and storage (CC3) applied to the iron and steel, comment, air infering and obju- and paper induction. International Journal of Greenhouse Gas Control in press, 71–84 (2017).
BECCS	New process		Capturing CO2 when producing e.g future heldnets in e.g. a gualication process minimizes the incommental cost for the "capture" (as CO2 already in high concentration)	Capture part no problem, success rests upon the gasification part	negastive emission (up to 50% of carbon flow)			Research report - perr reviewed	http://portal.research.ls.se/portal/fley/334 01447435055.sdf http://www.ec.n.eldocs/literary/report/201 1/e11012.edf
Terra CO2	New Process	Geopolymer	Geopolymer concrete combines an alkaline liquid with a geological source material containing silona and aluminum to form a londer that does not use any horizond content. Encode the chemical reaction that takes place is a polymerization process, the material is called a geopolymer.	the State of the Geopolymer Research & Development	Resulting in CO2 emission reduction up to 80% compared with Portland cement	a reduction of 59% Energy needs in the manufacture of Rock-based geopolymer cement compared with Portland cement			http://www.goonolymer.org/wp. content/wikash/Fales_CC2-values.odf
CarbonCure Technologies	Existing/under development	The production of gropolymer superior to all methods since it represents a high reduction the second second second second second second second consumption (Yoray et al., 2020), besides the added benefic any disturbances to develop a different building material (Tong, 2020).	the mechanism of geopolymetrization, including the controlling parameters and different sur materials (by sub, lucifier and ender the survey of the survey	Incorporating nanotechnology in the production of geopolymer through nano-sized additives will yield good impact in reducing the cost and enhancing the mechanical properties.	Reduction in CO2 emissions has been measured up to 0.73 ton CO2/ton of OPC replaced by geopolymer (Dal et al., 2013).	Geopalymer can replace OPC, and thus decreasing the energy consumption, reducing the cost of the building material, and minimizing the environmental impacts of the cement industry.	Searching for new activators is mandatory for lowering the cost at the large scale production and the sustainability	Peer reviewed article: Recent progress in environmentally friendly geopolymers	N. Shehala, E.T. Sayed and M.A. Addelareen, Soence of the Total Enveronment 762 (2021) 145156
Mining and Carbon reduction	A UBC-based Tech. R&D	Cathon dioxide is removed from the gas before it exits the end of the pipe. The cathon is captured in the form of a solid mineral precipitate.	The carbon double bearing has its circulated through the psychia- containing instartue tailings. The Baynite nickled deposet is ideal for CO3 sequestration demonstrated non-psycict. Prospects for CO2 mineralization and hencined weathering of darrandle mine- tailings from the Baytiste nickled deposit in Britch Columbia.	BRIMM's Carbon Sequestration research project, led by BRIMM Director & UBC Prof. Greg Dipple	Direct air capture of CO2 would offset ~25% of a prospective mine's carbon emissions. Reaction of CO2+tch gases with tailings would offset ~50% of a mine's emissions.	under research	Potential savings would be \$10.5 M/yr under a carbon price of \$50/t CO2 equivalent.	Peer reviewed article	bitas://www-sidencodirect. comaroxy.lb.duca/science/article/pil/512 50583619302531
Low Carbon H2 production			The abundant natural gas resources could contribute to low- carbon hydrogen production if integrated with CCS facilities. The western Canadian sedimentary bacins (WCSB)			R&D		Peer reviewed article	https://documentcloud.adobe.com/link/rev lew?uri=um:aaidscds:US:f35cac57-39cc 4468-b64e-8609s6c501c18pageNum=1
Carbon dioxide disposal	A permanent method of CO2 disposal based on combining CO2 chemically with abundant raw materials to form stable carborate minesia. Preliminary consoluted on the types of processes, involving either direct carbonation of mineras at high temperature or processing in aqueous solution.	CO2 dispoal in carbonute minerals	CCU has certain disadvantage: the requirement of high energy consumption processes such as mineral carbonation plus stable metal accuracy are required in the CCO. In this work: constrained assarter to supply metal alone, Plas, the adetected is with a mine subacton charged CO2 that a apound CO2 to the subactor of the supply of the supply and the supply under moders conditions. As a strong languagitation supply metal because of the reaction of carbonate radicity with metal ions in the sessater.	Varying between R&D, pilot and commercial	Zero	reduced in energy impact vs. CCU	uncertain	Peer reviewed article	http://dx.doi.org/10.3390/(erph18010120
Canada three large-scale CCS projects	CCS offers a general technology to reduce greenhouse gas emissions (GHG) in this hard to abate sector.	Post combusten flue gas is remarkably andrar in commet or coal thermal plants and CCS lessons learned can be readly adapted and transferred across the industries.	1. SakPower's CCS facility at the Boundary Dam Power Station mare Extrant, Stak. 2. the Wingham- Makie mehanoet of incover projects operated by Conoso Energy and Apache Casala. It is bein Claude project at the Sochood obtained upgrader near Conosoton.	in commercial operation	Canady's renewed target aims to reduce emissions by 40 to 45 per cent below 2005 levels by the year 2000.	it would cost about 30 per cent less.	A second- generation BD3 - type project at double the size is projected to have costs 67 per cent lower per tonne of captured CO2 than the first.	Report by Beth (Nardy) Vallaho Opision April 29th 2021	https://www.nationsibherver.com/2021/0 4/29/options/causia must go big carbon- casture.clmsite.gods
Carbon Capture-Next wave	Metal lorganic frameworks (MOP): Chemically processing the fuel before it exters the power plant can turn it into CO2 and hydrogen. After the Mori captures the CO2, the hydrogen is barned; and the most a chemical processing step would need to be built toto new enders a hemical processing step would need to be built toto new power plants a spr- combustion process.	a clear of highly absorber, succession meeting, called model capate for executive (MOR) have emerged as a proving meterial for carbon capture in power plants.	Source shell help should have descensed a law poly regardly identify from considering for advance spectrame-source pay in our pay or benefits the computational effect that was previously mixed to pay or benefits the generic algorithm, they regardly searched through a database of 55,000 MOFs.	R&D. Top candidate: a variant of NOTT-101, has higher capacity for CO2 than any MOT reported in sciencific literature for the relevant conditions.	10-15 per cent of power plant exhaut is CO2; the rest is mainly nitrogen and water varior. Start and the team have designed a MOf that can suit there gase to acquire CO2 before it mixers the attroophere.	under research	uncertain	Peer reviewed article, 2021	kme//decorg/10.1007/110106.001. 001115
Carbon Capture-Next wave	Nanosponges	consists of a silica scaffold, the sorbent support, with nanoscale pores for maximum surface area. They dip the scaffold into liquid anime, which soaks into the support like a sponge and partially hardems. The finished product is stable, dry white powder that captures CO2 even in the	Emmanuel Giannels (Cornell University materials scientists) have invented low toxistip, highly effective carbon trapping "sponges" that could mprove carbon capture economics. That perform as well as or better than industry benchmarks for carbon capture.	R&D	uncertain	R&D	under research	website	http://www.engineering.cornell.edu/facult y.directory/enymanuslip.giannelis

		presence of moisture.							
Carbon Capture-Next wave	NH2-MIL-101(A) metal-organic frameworks (MOF4) for CD2 separation.	Notably, the membrane containing 10 etc % 5 Mits 5 (Not 244). 2010/0 [incrimovation with 5:0 m of a PHT3] showed an increment in CO2 permetablic (ROUL and Idaa) CO2 (increments in CO2 permetablic (ROUL and Idaa) CO2 (increments in CO2 (ROUS) compared to the PES membrane	No 3 ML 101(A) much organic frameworks (MCH) covered with 3 anni-organization (MTS) were incorporated into the polyatherulifone (MTS) to produce music-matrix membranes (MMMA) (or CO2) assistantic, developed a Countralue, tolewards for the first meth, the ability to engineer dual transport pathwards in MCH hydre methemates by achiening any high loadings of MCP (D0 wHS), which result in an 8-fold improvement in CO2 permeability from the pure polymer.	RÉD	net carbon negative			Peer reviewed article, 2021	<u>https://doi.org/10.2016/j.chend.2001.09.03</u> 1
Carbon Capture-Next wave	Crystals	a design of MOF at mesoperous S02 yell-shell meansured by via a mesoperous siles costing followed by viet own more estimating control Different from conversional allial or and exhibing methods, water exhining of MOF surface presents a green and cost effective way to form yolk shell structures.	created crystals that capture CO2 much none efficiently than previously locan material, even in the presence of water. So far, this has been difficult sizes the presence of water prevents the source of the second second second second second second second second second second second second second second second second second the micro-spores within the crystal have different adorption sites for CO2 and water.	RăD	uncertain	under research	under research	Peer reviewed article, 2020	<u>http://doi.org/10.1016/.mait.2020.06.021</u>
Carbon Capture-Next wave	Turning carbon to rock	the first time the LCDI can be permanently and mapping builds area from the consultative ty- ingenting it in use account of the LCD sector with the consumption of the LCD sector with the consumption of the LCD sector environmentally long in minerals.	led by Columba University, the University of Isoland, the University of Toolson and Regional Congregations and the University and the University of Isoland States and the University of Isoland Table as United as States (CS). Successful hypersong at Replack Energy's Helicheld geothermal power plant	R&D-next step for CarbFu is to upscale CO2 storage in basal: the CarbFu project, a European Commission—and Department of Energy–funded program to develop ways to store anthropagenic CO2 in basaltic rocks through HeI, Laboratory and modelling studies.	between 95 and 98 per cent of the injected CO2 was mineralized over the period of less than two years, which is amazingly fast, up to 5,000 tonnes of CO2 per year are captured and stored in a basaltic reservoir.			Peer reviewed article, 2020	<u>inter//doi.org/10.3016/.fori.2003.117603</u>
Carbon Capture-Next wave	Turning carbon into fuel	bubble or through an approve solution of percentrelynomheamine, adday a crashy to encourage hydrogen to latch not the CC2 under pressure. They then heater the two solution, converting 3P percent of the CC2 those methanol. Though market with water, the resulting methanol can be easily distilled,	Provided efforts bare required a source multistage process with the use of high temperatures and the phonometrotices of CO2, maning that menualize energy sources avoid not be able to efficiently power the process. The new system operates at around 125–165 degrees Calaxia, minimizing the decomposition of the calaxia, which accurs at 35 degrees Calaxia. It also uses a homogreeous catalyst, making it a quaker "one-part" process.	the process to the point that it could be scaled up for industrial use, though that may be five to 10 years away.		under research	uncertain	Patent	Convertion of carbon district to methanol and/or animatry letter using the informing of methanic returnal gas, G. A. Oliba and G. K. S. Prakash, U.S. Patent, 7, 260 559, March 15, 2011, 2020-2011
Carbon Capture-Next wave	Turning carbon into fibres	Electrolytic production of iron in molten sails by splatting iron code into iron media and C3.1 a splatting iron code into a ron media and C3.1 a C2.2 emission associated with conventional carbothermal iron production and permits.	developed a technology to accountially convert almospheric CO2 directly into highly valued carbon studifies for industry and directly into highly valued carbon studifies for industry and Decamber, as well as in high-end sports explorest, and the blacks and a host often products. Taxabases 20:07 free method for iron production, by modifying rate electrosynthes in moles IL/2015 or could into product partalences 20:07 free mother for iron production, by modifying rate electrosynthes in moles IL/2015 or could into product partalences is and by decreasing the electrolyte estrated with the pure iron product.	scaling up quickly and soon should be in range of making titnnes of klugarans of nanofibres an hour.		electrical energy costs of this "sofar thermal electrocolonical process" to thermal electrocolonical process. To nanofhre product, which means the cost of running the system is hundreds of times less than the value of product output.	under research	Peer reviewed article, 2021	<u>https://doi.org/10.2016/.organ.2020.117</u> 222
Svante	our technology captures carbon dioxide from flue gat, concentrates it, then releases it for safe storage in inductrial use, all in 60 seconds.	using tailer made nano-materials (solid adotents) with vey high storage capacity for carbon divide. A logar-cabe inted quantity of our naterial has the surface area of a football field. We have regimered these adotents to each and release CO ₂ in less than 60 seconds, compared to hours for other technologies.	capture CO2 directly from industrial scores at less than half the capital coal of existing existence, Scores makes commercial scale carbon capture registing, and positions gelotationate to play affense in the fight against climate change.	market ready and commercial- scale solutions. Follow a manual added Ink Pilot Pinto 30 tpd, Uoydminister, 5K, Canada. And Lafageteiolom Cenner Pilot Lima 11 pd Bichmond, BC, Canada	400 Model – Pilot Plant 30 tonne per day (TPD) 1500 Model – Commercial Plant 500 - 1,000 TPD 100 Model – Lab Testing Units 100 Kag per day 200 Model – Field Testing Units 500 - 1,000 kg per day	A new class of materials such as functionalized silica or metal organic frameworks holbit far shapera temperature and pressure swing absorption and desorption, which allow for lower parasitic energy loads and faster kinetic rates.		webste	htte://wartene.com/arton.casture. technology/
Carbon Upcycling Tech (CLIT)	The reactors are pressurized with CO2 from point source emission. Then the material is treated through our patential Mechanically Assisted Chemical Exfoliation (MACE) process	We treat readily available powder feebtooks such as fly Adb, couched gluss, steel slag, graphite, Luk, and more	End Product: A subte of CO2 enhanced address that are used in concrete, anti-corresion coarlings, plastics, consumer products, and more	scaling up - Etz 20 tonne capacity	Compared to a conventional coating, CUT's anti-corrorsion coating has a 27% lower carbon footprint. CUT's polymer additive can be incorporated into many types of polymers as ancelator or filter but in Polyethylene, this additive results in 30% lower carbon footprint.	CUT's technology is a low energy carbon utiliation process which operate in backness to production to targeted at non-peak electricity hours.	New technologies als projecting a price of 558 30 per metric ton of CO2	website	http://carbonupoycling.com/technology
Suncor Energy Inc.	At Suncor, we extract, produce and provide energy from a mix of sources, ranging from oil sands to wind and renewable fuels.	Carbon Cupture	As Gradu's leading integrated energy company, we embrace our role in sharing our shared and auxianable energy factors and show that together are well to loo keyboard the energy nets of a loady and understand what is required for the future. Surce proceeds a load of lands development. Our analy investments is therhoeging helped underst the potential of the of sumb in processing reliability and performance, expanding providential footgrint.	scale-up	the GHG intensity of cogeneration power is approximately 75 per cent lower than could fired power generation	840	under research		https://www.suncer.com
Chan02	Caligny-based ClearC2 developed CMBIRX, small- calle cathoraphene device for home finances that capteres C22 in the form of acheoste, which can then be used to make a range of product, including hand scop.	Carbon Capture	"Interconnectably ferendly scage made with captured carbon. Every ClearO2 scage product its made with carbon that would otherwise have been released into the atmosphere if not captured by our CARBIN-X ⁻¹ units and turned into annuality, and the commutity, and the deployment of more CARBIN-X ⁻¹ would save the supporting the deployment of more CARBIN-X ⁻¹ would a more the world to capture more carbon and reduce the impact on our climate.	under research		under research	uncertain	website	https://www.dowed.ca/
C02 Solutions Inc.	EXCLUSOR PROPRIETARY HOL- PREFORMANCE DRAVINE COMPARING Solutions (involution exclusion) capture technology stands cut through its impacts are of the carbonic schiptrase (CA) ensyme.	Carbon Capture	CO2 Solutions inc. developed an alternative to existing liquid ansise caftor capture that produces to took wates (Anine kaned water- lean solvents are considered to ta promised empry-aving alternatives to existing aqueous antire solvents for CO2 options (https://doi.org/10.1016/j.j.j.2002.22171) H company hos partnered with Resolute Foret Products to build a 30 tomes per- day cathon captures just at the company just just in III. Sam- Helicen, with the CO2 to be used in the Transla Genetinose (CA) renows. Instandar protect products to build a 30 tomes per- day cathon captures in instantion and a living organome. CA is wat to the option exhanged CO2 datapets technologies (CA) renows. Instandar protects the human and all living organome, CA is wat to the option exhanged CO2 datage respiration. Issues tunnel in 2014 when CO2 Substans presented their high- performance inductial lemson of carbonic anlyticase.	its commercial 30 rélices 10 tpd capture unit	2000 hours in order to capture ten tonnes of CO2/day.	under research	under research	website	https://solvebitions.com/en/initian/

Pond Technology	the world's first commercial installation to capture and convert industrial emissions into valuable nutraceutical end- products.	Carbon Capture	Developed a process for taking untreasted emissions from power plants, references or centers plants and uses it to grow align in biostracticus, usequerings in the taking and conting growthen the strange of the strange of the strange of the strange ford, consertis, and biofuels. In January 2010, Proof Secares application (Secare), and the Strange biothylication (Secare), and the Strange of the Strange District Energy.	the world's first commercial installation to capture and convert industrial emissions into valuable nutraceutical end- products		under research	uncertain	website	http://www.ponttech.com/company/
CZONT	Carbon Corp's LCXPT Genesis Device" is a proprietary, resolutionary, new chemistry and technology microbaced in 2015. In a manner asimilar to which alwarman metals in another which alwarman metals in another which alwarman metals in another extensiony. Carbon Cope transforms: Carbon Decode into valuable carbon can no meternals by electrologi.	Carlon Capture	The CDUT's technology is defined in international media including the discribed in international media including the discribed in IRE, Forbits and Science. Cution Corpurationally directly removes and delimitative tits genetionary and including increasing the second science of the second science produces carbon neorables (CMS), carbon nation corress (CMS), for graphone, or the role graphone and the second science carbon discribed the second science in the second science produces carbon neorables (CMS), carbon nation corress (CMS), does graphone, or the role graphone science in the CO ₂ and graph Corp. (CQ2) intercepted directly from the atmosphere, or from file atacks, which the need to concentrate the CO ₂ and graph electrolysis into O2 at the acode and into high value CTri, formed by transition metal nucleation size, at the cahode.	880	Carbon Corp, who relocated from the USA to Calgary, transform CO2 into carbon anotholes, with support to carbon carbon carbon and coal efficience regularisation and coal efficience regularisation composite building materials, and expanding applications in industrial catalysis, batterins, and rano electronics.	under research	uncertain	website	https://www.citet.com
SeeO2 Energy	SeeO2 Energy converts CO2 emissions into high value fuels and chemicals in a net negative carbon process.	Carbon Conversion and Storage	This net negative carbon process can be used in green plastics, chemical and meal processing industries.	under research	net carbon negative	under research		website	https://www.ucca?energe.com/
Carbon Cap Inc.	The world's first industrial carbon recycling system.	Carbon Capture	Dur paterted TANCEM CARBON RECYCLING SYSTEM a housed in a modular, ontanestreid drop in unit, designed to capture and convert stack measure and the source. Our propertury process in at cabout mogine, efficiently single high volume of heavy houtry emission — produced by programmation or other industrial processes such as centert and manufacturing—to create valuable material and revenue streams.	under research	net carbon negative	under research	under research	website	http://www.ahr.co/m/comparing/carbon cap. log/
Hyperion Global Energy Inc.	All-in-One Capture + Conversion Drop-In-System. INDUSTRAL CARBON RECYCLING	Carbon Capture & Conversion	an Ottawa based technology. Our patented TANDEM CARBON ECICILING SYSTEM is housed in a modular, constained drop in unit, displayed to capture and convert stack emission directly at the source. Our proprint process in a choice mighting, produced by the programment on other industrial processes can be a comment and manufacturing—to oneate valuable materials and revenue streams.	scale-up	IMPACT: UP TO 99% CD2 MITRIGATED AT SOURCE	under research	under research	website	<u>http://hyperconnergy.cz</u>
CarbiCrete	With CarbiCrete, cement is replaced with steel slag, which is made with the other materials using studied equipment. The mix is then poured into a convertional block-making machine where the CMUs are formed.	Carbon Capture and cure	Carbicrete is a Montreal based carbon mesoal technology company that is developing menousle, low cost kulting publicits that contribute the read-scotio of periodized gas emissions. Carbicret developing CD, mineralization systems that spects carbon developing the periodized scott sector of the spectra of the spectra of the spectra of the spectra of the spectra chamber in state shared by the spectra of the spectra chamber in state shared by the spectra of the spectra chamber in state shared by the spectra of the spectra chamber in state shared by the spectra of the spectra has reached full strength.	scale-up	3kg, CO2 abated/removed per CMU. 500,000 kg of CO2 permanently embedded in CMUs 1,000,000 kg of CO2 emissions avoided	higher compressive strength by up to 30% and display better freeze/thaw resistance. Up to 30% Better compressive strength	10-20% Lower material costs	webste	<u>hits://orkinets.com</u>

S7 Cutting-edge innovative technologies within the hydrogen value chain from a) R&D Lab's universities in Vancouver and Victoria. (PICS's research project: Technological Innovation and Climate Policy Solutions to Achieve Net-Zero Emission by 2050 for EITE-Industries in BC and Canada) and b) Cleantech-based Companies. See profiles in the appendix for more details on these companies ¹

a)	Technology Developers	Transportation & Distribution	Utilities	End-use Applications
	• S. Holdcroft ²	• N. Branda ² •	M. Moallem	• J. Axsen ²
	• W. Merida ³	• K. Oldknow ² •	M. Adachi ²	• E. Maine ²
	• B. Gates ²	• G. McTaggart-Cowan •	J. Wang	• M. Jaccard ²
	• E. Kjeang ²	• M. Bahrami •	K. Kavanagh	• G. Wang
	• P. Palmer	• F. Golnaraghi ² •	M. Ordoñez	• J. Wang
	• D. P. Wilkinson ³	• P. Jula •	W. G. Dunford ³	• Z. Dong
	• D. Harrington ⁴	• N. Djilali •	C. Eskicioglu	• R. Sadiq ³
	• K. Smith	• L. Li •	Laboratory for	J. Jatskevich
	• M. MacLachlan	• G. Lovegrove	<u>Alternative Energy</u> <u>Conversion</u>	• A. Lau
	• C. Berlinguette ³	• J. R. Martí •	Institute for	• <u>Sustainable</u>
	• J. Zhang	• J. Saddler ³	Integrated Energy Systems (IESVIC)	Transportation Action Research Team
	• A. Rowe	• P. Servati ³		
	• J. R. Grace	• H. Trajano		

S8 Hydrogen Storage: Energy demand for storing and releasing hydrogen, Global, 2020.

Source: Adopted by the author from the report called "Disruptive Innovations in Production, Storage, and Transportation of Hydrogen" with permission from Ajo Joseph, Frost & Sullivan ⁵

Tec	hnology	Energy Demand of Energy Conversion Processes, kW/kg Delivered H2		Operating Costs of Energy Conversion Processes, \$/kg Delivered H2		Tech	nology Readiness Le	vel (TRL)		
		Electrical energy	Thermal energy (heat)	Electrical energy, ≈ 0.15* \$/kWh	Thermal energy, ≈ 0.04* \$/kWh	Total	Conversion to storage carrier	Transportation	Process for releasing hydrogen	Tota
Physical- based	Compressed gas	1-2 kWh _{el} /kg	-	0.3 \$/kg	-	0.3 \$/kg	9	8	8	8
	Liquid H ₂ ⁶	8 kWh _{el} /kg	-	1.2 \$/kg	-	1.2 \$/kg	7	7	6	6
Material -based	Adsorption	6-7 kWh _{el} /kg	-	0.9-1.1 \$/kg	-	0.9-1.1 \$/kg	4	5	3	3
	Metal hydride	10 kWh _{el} /kg	10 kWh _h /kg	1.5 \$/kg	0.4 \$/kg	1.9 \$/kg	5	4	5	4
	Inter- metallic hydride	0.8 kWh _{el} /kg	2-6 kWh _h /kg	0.1 \$/kg	0.3 \$/kg	0.4 \$/kg	3	3	3	3
	Complex hydride	1 kWh _{el} /kg	5-7 kWh _h /kg	0.2 \$/kg	0.3 \$/kg	0.5 \$/kg	3	3	3	3
	Chemical hydrogen	2-6 kWh _{el} /kg	4-7 kWh _h /kg	0.3-0.9 \$/kg	0.3 \$/kg	0.6-1.2 \$/kg	9	9	6	6
	Liquid organic hydrogen	2-3 kWh _{el} /kg	11-35 kWh _h /kg	0.3-0.5 \$/kg	0.5-1.4 \$/kg	0.8-1.9 \$/kg	5	6	7	5

S9 Hydrogen Storage: Techno-economic Comparison of Liquefied Hydrogen Storage, Global, 2020

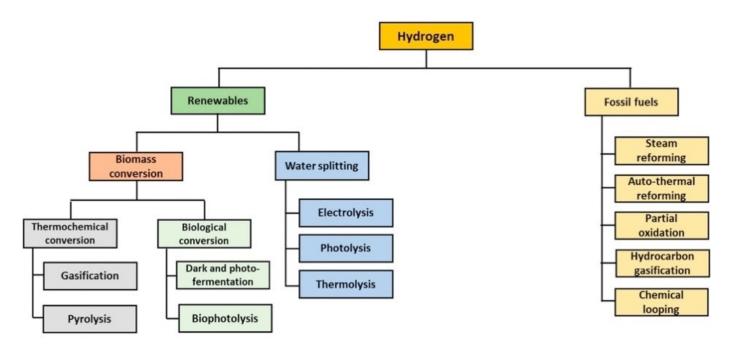
Source: Adopted by the author from a report called "Disruptive Innovations in Production, Storage, and Transportation of Hydrogen" with permission from Ajo Joseph, Frost & Sullivan⁵

	Hydrogen Storage densities		Technology Maturity	Energy Conversion Efficiency (%)	Operating Costs, \$/kg delivered H2	Capital Cost, \$/kg delivered H2	Delivery Cost, \$/kg delivered H2
	Volumetric (kg/m3)	Gravimetric (wt%)					
Liquid H₂⁵	70	-	6	37.1	1.2	1.8	0.6
Chemical H ₂ - ammonia ⁷	123	17.7	6	36.9	1.1	1.6	0.3
Liquid organic H ₂ ⁸	57-64	6.2	5	24.7	1.9	3	0.8

S10 Power-to-H₂ Technology: Technology Comparison, Global, 2020.

Source: Adopted by the author from the report called "Techno-economic Comparison of Power-to-X Technology" with permission from Ajo Joseph, Frost & Sullivan⁵ (Techno-economic Comparison of Power-to-X Technology) S11 Renewable hydrogen production via electrolysis: Innovation Technology from demonstration-R&D Lab to maturecommercialized ⁹

Electrolyzers	AEC - Mature	PEMEC - Commercial	SOEC - Demonstration to R&D		
Electrolyte	Aq. potassium hydroxide (KOH) ¹⁰	Polymer membrane ^{11 12}	Yttria stabilised Zirconia (YSZ) ¹³		
Cathode	Ni, Ni-Mo alloys ¹⁴ ¹⁵	Pt, Pt-Pd ¹⁶	Ni/YSZ ¹³		
Anode	Ni, Ni-Co alloys 17	RuO2, IrO2 ¹⁸	LSMb/YSZ ¹⁹		
			Ce/Ru ²⁰		
			Ce/Ni ²¹		
Cell voltage (V)	1.8-2.4 22	1.8-2.2 23	0.7-1.5 24		
Current density	0.2-0.4 25	0.6- 2.0 ^{26 27}	0.3-2.0 28		
(A /cm2)					
Voltage efficiency (%HHV)	62- 82 ²⁹	67-82 ³⁰	< 110 31		
Cell area (m2)	< 4 32	< 0.3 33	< 0.01 ¹³		
Operating Temp. (°C)	60-80 ^{10 25}	50-80 ^{34 27}	650-1000 ^{35 36}		
Operating Pressure (bar)	< 30 ³⁷	<200 38	<25 ³⁹		
Production Rate	< 760 ^{40 41}	< 40 42	<40 32		
(m3 H2/ h)					
Stack energy (kWh / m3 H2)	4.2 -5.9 ⁴³	4.2- 5.5 ^{44 45}	> 3.2 ³⁵		
System energy (kW /m3 H2)	4.5-6.6 ⁴⁶	4.2-6.6 47 27	> 3.7 (> 4.7)kWh-energy ⁴⁸		
Capital Cost	1300 – 1560 ⁴⁹	2400- 3000 ⁵⁰	> 2600 ⁵¹		
(\$/kW)					
Stack Lifetime (h)	60,000- 90,000 ^{52 53}	20,000- 60,000 44	< 10,000 54		


S11 Alternative Fuels Production: Comparative Analysis, Global, 2019.

Source: Adapted by the author from the report "Breakthrough Technologies Advancing the Future of Alternative Fuels Production" with permission from Ajo Joseph, Frost & Sullivan ⁵

Technology		Technology Readiness Level	Capital Cost	Production Cost		Efficiency, %	Cost efficiency
		(TRL)		Hydrogen	Biofuel	-	
Thermochemical and Chemical	Pyrolysis	8	\$50 – 650M	1 -2.5 \$/kg	20-30 \$/GJ	35-50	Medium
	Gasification	9	\$115 – 150M	1.5-2 \$/kg	15-60/GJ	40-50	High
	Hydrothermal Liquefaction	7	\$100-125M	-	20-30 \$/GJ	20–60	Medium
	Torrefaction	7	\$10-20M	-	42 \$/t	-	High
	Esterification	9	\$375M	-	20-30 \$/GJ	40-70	Medium
Electrolysis	Low-temperature Electrolysis	8	800-1000 \$/kW	12-55 \$/kg	-	40-80	High
	High- temperature Electrolysis	5	>1000 \$/kW	2-11 \$/kg	-	20-45	High
	Photo-electrolysis	5	-	10 \$/kg	-	0.06	Low
	Microbial Electrolysis	6	1300 \$/m3	3 \$/kg	-	60-80	High

S12 Hydrogen production pathways via renewables and fossil fuels.⁵⁵

Image source: Adapted by the authors from "Energy Transition Outlook" DNV.

References:

- 1 The Netherlands Enterprise Agency, Market Scan of the Canadian Hydrogen Sector Commissioned, .
- 2 R&D Labs at Simon Fraser University, .
- 3 R&D Labs at University of British Columbia, .
- 4 R&D Labs at University of Victoria, .
- 5 A. Joseph et al, Innovations in Production, Storage, and Transportation of Hydrogen, Frost & Sullivan, 2020.
- 6 A. Hafsia, Z. Bariza, H. Djamel, B. M. Hocine, G. M. Andreadis and A. Soumia, *Impact Integr. Clean Energy Future Mediterr. Environ.*, 2011, **6**, 643–650.
- 7 Wärtsilä Corp., Wärtsilä launches major test programme towards carbon-free solutions with hydrogen and ammonia, 2021.
- 8 UBC Sustainability, Clean Energy Research Centre Seminar, 2021.
- 9 Z. Abdin, A. Zafaranloo, A. Rafiee, W. Merida, W. Lipinski and K. R. Khalilpour, *Renew. Sustain. Energy Rev.*, 2020, **120**, 109620.
- 10 A. Mani and V. I. Birss, *Electrochimica Acta*, 2013, **105**, 170–179.
- 11 Ionomr Inc., *Renewable hydrogen production*, 2023.
- 12 X. Luo, S. Chen, Z. Xia, X. Zhang, W. Yuan and Y. Wu, Appl. Sci.-Basel, 2019, 9, 4863.
- 13 J. Nielsen and J. Hjelm, *Electrochimica Acta*, 2014, **115**, 31–45.
- 14 S. N. Hasan, M. Xu and E. Asselin, *Can. Metall. Q.*, 2019, **58**, 1–18.

- L. Wang, T. Weissbach, R. Reissner, A. Ansar, A. S. Gago, S. Holdcroft and K. A. Friedrich, Acs Appl. Energy Mater., 2019, 2, 7903–7912.
- 16 M. Torihata, M. Nakamura, N. Todoroki, T. Wadayama and N. Hoshi, *Electrochem. Commun.*, 2021, **125**, 107007.
- 17 F. Ganci, V. Cusumano, P. Livreri, G. Aiello, C. Sunseri and R. Inguanta, Int. J. Hydrog. Energy, 2021, 46, 10082–10092.
- 18 K. S. Exner, Chemelectrochem, 2021, 8, 46–48.
- 19 T. Jiang, J. Gao, Z. Jin, K. Hu, Q. Yuan and H.-J. Qiu, Mater. Today Energy, 2021, 21, 100835.
- 20 B. Li, S. He, J. Li, X. Yue, J. T. S. Irvine, D. Xie, J. Ni and C. Ni, Acs Catal., 2020, 10, 14398–14409.
- 21 A. N. Tabish, H. C. Patel, A. Mani, J. Schoonman and P. V. Aravind, Electrochimica Acta, 2022, 423, 9.
- 22 P. K. Giesbrecht, A. M. Muller, C. G. Read, S. Holdcroft, N. S. Lewis and M. S. Freund, *Sustain. Energy Fuels*, 2019, **3**, 3611–3626.
- 23 J. Zhu, S. Wu, X. Luo and S. Liu, 2014 17th Int. Conf. Electr. Mach. Syst. Icems, 2014, 308–313.
- 24 P. R. Shearing, D. J. L. Brett and N. P. Brandon, Int. Mater. Rev., 2010, 55, 347–363.
- 25 P. Fortin, T. Khoza, X. Cao, S. Y. Martinsen, A. O. Barnett and S. Holdcroft, J. Power Sources, 2020, 451, 227814.
- 26 X. Luo, L. Ghassemzadeh and S. Holdcroft, Int. J. Hydrog. Energy, 2015, 40, 16714–16723.
- 27 L. Xing, W. Shi, H. Su, Q. Xu, P. K. Das, B. Mao and K. Scott, *Energy*, 2019, **177**, 445–464.
- 28 H. Takeuchi, H. Nishiyama, A. Ueno, S. Aikawa, M. Aizawa, H. Tajiri, T. Nakayama, S. Suehiro and K. Shukuri, *Solid Oxide Fuel Cells Sofc Vi*, 1999, **99**, 879–884.
- 29 K. Zeng and D. Zhang, Prog. Energy Combust. Sci., 2010, 36, 307–326.
- 30 M. Carmo, D. L. Fritz, J. Merge and D. Stolten, Int. J. Hydrog. Energy, 2013, 38, 4901–4934.
- 31 T. Horita, Energy Technol. 2016 Carbon Dioxide Manag. Technol., 2016, 163–170.
- 32 T. T. Nguyen, , DOI:https://dx.doi.org/10.14288/1.0385113.
- 33 K. Nagasawa, T. Ishida, H. Kashiwagi, Y. Sano and S. Mitsushima, Int. J. Hydrog. Energy, 2021, 46, 36619–36628.
- 34 X. Luo, G. Lau, M. Tesfaye, C. R. Arthurs, I. Cordova, C. Wang, M. Yandrasits and A. Kusoglu, *J. Electrochem. Soc.*, 2021, 168, 104517.
- 35 Z. Zeng, Y. Qian, Y. Zhang, C. Hao, D. Dan and W. Zhuge, Appl. Energy, 2020, 280, 115899.
- 36 L. Fan, B. Zhu, P.-C. Su and C. He, Nano Energy, 2018, 45, 148–176.
- 37 D. Todd, M. Schwager and W. Merida, J. Power Sources, 2014, 269, 424–429.
- 38 T. Holm, T. Borsboom-Hanson, O. E. Herrera and W. Merida, Energy Convers. Manag., 2021, 237, 114106.
- 39 J. Milewski, J. Kupecki, A. Szczesniak and N. Uzunow, Int. J. Hydrog. Energy, 2021, 46, 35765–35776.
- 40 S. Brynolf, M. Taljegard, M. Grahn and J. Hansson, *Renew. Sustain. Energy Rev.*, 2018, 81, 1887–1905.

- 41 F. Xiao, Y.-C. Wang, Z.-P. Wu, G. Chen, F. Yang, S. Zhu, K. Siddharth, Z. Kong, A. Lu, J.-C. Li, C.-J. Zhong, Z.-Y. Zhou and M. Shao, *Adv. Mater.*, 2021, **33**, 2006292.
- 42 V. J. Thomas and E. Maine, J. Clean. Prod., 2019, 235, 653–663.
- 43 G. Zhao, M. R. Kraglund, H. L. Frandsen, A. C. Wulff, S. H. Jensen, M. Chen and C. R. Graves, *Int. J. Hydrog. Energy*, 2020, **45**, 23765–23781.
- 44 H. Niu, C. Ji, S. Wang and C. Liang, Int. J. Hydrog. Energy, 2022, 47, 2647–2661.
- 45 J. I. S. Cho, J. Marquis, P. Trogadas, T. P. Neville, D. J. L. Brett and M.-O. Coppens, Chem. Eng. Sci., 2020, 215, 115375.
- 46 A. Mohammadi and M. Mehrpooya, *Energy*, 2018, **158**, 632–655.
- 47 T. L. Doan, H. E. Lee, S. S. H. Shah, M. Kim, C.-H. Kim, H.-S. Cho and T. Kim, Int. J. Energy Res., 2021, 45, 14207–14220.
- 48 L. A. S. Zompansi, M. A. R. Toral, R. R. Rodriguez and L. A. G. Serrano, *Energy-Effic. Cost-Eff. Environ.-Sustain. Syst. Process. Vols 1-3*, 2004, 717–732.
- 49 T. G. Douglas, A. Cruden and D. Infield, Int. J. Hydrog. Energy, 2013, **38**, 723–739.
- 50 F. Elmanakhly, A. DaCosta, B. Berry, R. Stasko, M. Fowler and X.-Y. Wu, Aims Energy, 2021, 9, 775–811.
- 51 M. Maier, K. Smith, J. Dodwell, G. Hinds, P. R. Shearing and D. J. L. Brett, Int. J. Hydrog. Energy, 2022, 47, 30–56.
- 52 M. A. Khan, I. Al-Shankiti, A. Ziani and H. Idriss, Sustain. Energy Fuels, 2021, 5, 1085–1094.
- 53 D. R. Dekel, I. G. Rasin and S. Brandon, J. Power Sources, 2019, 420, 118–123.
- 54 S. Haefele, M. Hauck and J. Dailly, Int. J. Hydrog. Energy, 2016, 41, 13786–13796.
- 55 DNV core team, Steering committee: Remi Eriksen, Ditlev Engel, Ulrike, Haugen, Trond Hodne, Liv Hovem, Project director: Sverre Alvik, and Modelling responsible: Onur Özgün, *Energy Transition Outlook*, DNV, 2021.