Supporting Information

Sustainable synthesis of diethyl carbonate from carbon dioxide and ethanol featuring acetals as regenerable dehydrating agent

Wahyu S. Putro,^a Seiichiro Ijima,^a Seiji Matsumoto,^b Satoshi Hamura,^b Mizuho Yabushita,^c Keiichi Tomishige,^c Norihisa Fukaya,^{*a} and Jun-Chul Choi^{*a}

^a National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Ibaraki, Japan.

Email: n.fukaya@aist.go.jp (N. Fukaya), and junchul.choi@aist.go.jp (J.-C. Choi)

^b Tosoh Corporation, 3-8-2 Shiba, Minato-ku, Tokyo 105-8623, Japan

^c Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6-07, Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan Table S1 Investigation of optimum condition for the synthesis of DEC using Bu₂SnO catalyst

$$CO_2$$
 + 2 EtOH
 $T(^{\circ}C), t(h)$
 $T(^{\circ}C), t(h)$
 $T(^{\circ}C), t(h)$
 H_2O

EtOH/	т	+ (h)	EtOH	Acetal	Acetone	2-Ethoxypropene	Mesityl oxide	DEC	DEC	DEC	I	MB (%) ^d	
acetal	(°C)	ť (n)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol)	(mmol) ^a	(%) ^b	(%) ^c	1	2	3
2/1	160	20	29.4	14.7	1.90	0.79	0.01	0.48	3	3	92	98	98
2/1	180	20	29.4	14.8	2.44	1.54	0.03	0.92	6	6	85	95	95
4/1	160	20	41.9	10.9	1.99	0.51	0.01	0.85	4	8	90	95	95
4/1	180	20	41.1	10.6	2.90	0.70	0.05	1.59	8	15	85	92	92
10/1	180	20	58.5	5.63	2.03	0.32	0.01	1.33	5	23	85	90	90
20/1	180	20	66.1	3.09	1.42	0.10	0.00	0.79	3	26	85	88	88
20/1	200	20	66.2	3.17	1.47	0.13	0.01	1.03	3	32	77	81	81
20/1	200	48	65.4	3.22	1.58	0.09	0.03	1.31	4	41	65	68	69
20/1	220	20	65.9	3.21	1.42	0.24	0.01	0.83	3	26	71	79	79

Reaction conditions: 5 MPa CO₂ at room temperature, 20 mol% Bu₂SnO relative to acetal. ^a DEC was determined by GC using *tert*-butyl toluene as internal standard. ^b DEC yield was calculated based on EtOH. ^c DEC yield was calculated based on acetal. ^d MB = material balance (%). (1) = 100 x (remaining acetal + acetone)/initial acetal. (2) = 100 x (remaining acetal + acetone + 2-ethoxypropene)/initial acetal. (3) = 100 x (remaining acetal + acetone + 2-ethoxypropene)/initial acetal. (3) = 100 x (remaining acetal + acetone + 2-ethoxypropene)/initial acetal. (3) = 100 x (remaining acetal + acetone + 2-ethoxypropene)/initial acetal. (3) = 100 x (remaining acetal + acetone + 2-ethoxypropene)/initial acetal.

Fig. S1 GC chart of DEC synthesis using acetal 1 and the corresponding byproduct

				EtO OEt					
			BL	u ₂ SnO, Sc(C	OTf) ₃ ()	ЦО		
	,	20 ₂ + 2	2 EtOH —	<i>T</i> (°C) <i>, t</i> (h) EtO	OEt +	п ₂ 0		
EtOH/	Τ	Sc(OTf)₃	EtOH	Acetal	Acetone	DEC	DEC	DEC	MB
Acetal	(°C)	(mol%)	(mmol)	(mmol)	(mmol)	(mmol)ª	(%) ^b	(%) ^c	(%) ^d
2/1	160	—	29.4	14.7	1.90	0.48	3	3	92
2/1	160	0.04	28.9	14.6	2.86	1.48	10	10	86
2/1	180	—	29.4	14.8	2.44	0.92	6	6	85
2/1	180	0.04	29.5	14.6	3.62	2.57	17	18	73
4/1	160	—	41.9	10.9	1.99	0.85	4	8	90
4/1	160	0.04	41.8	10.8	2.90	1.46	7	14	89
4/1	180	—	41.1	10.6	2.90	1.59	8	15	85
4/1	180	0.04	42.5	10.7	3.80	2.84	13	26	79
10/1	180	—	59.0	5.72	1.44	0.83	3	14	86
10/1	180	0.04	57.9	5.68	2.12	1.00	3	18	84
10/1	180	—	58.5	5.63	2.03	1.33	5	23	85
10/1	180	0.04	59.9	5.99	2.76	2.15	7	36	81

Table S2 The effect of co-catalyst (Sc(OTf))	3) for the synthesis of DEC	using Bu ₂ SnO catalyst
--	-----------------------------	------------------------------------

Reaction conditions: 5 MPa CO₂ at room temperature, 20 mol% Bu₂SnO relative to acetal, 0.04 mol% Sc(OTf)₃ relative to acetal amount. ^a DEC was determined by GC using *tert*-butyl toluene as internal standard. ^b DEC yield was calculated based on EtOH. ^c DEC yield was calculated based on acetal. ^d MB = material balance (%).

Table S3 Equilibrium constant from acetal formation in anhydrous methanol and the rate constant of the acetal hydrolysis

Ketone + 2 MeOH	\iff Acetal + H ₂ O	Acetal + H ₂ O \rightarrow Ketone	DEC fo	ormation
$K = [Acetal][H_2O]/$	[Ketone][MeOH] ²	k of acetal hydrolysis	(m	mol)
Ketone <i>K</i> / 10 ⁻³ mol·L ^{-1 a}		k ^b	Without Sc(OTf)₃	With Sc(OTf)₃
Acetone 1a	$\textbf{0.4}\pm\textbf{0.02}$	4.45	1.59	2.84
Butanone 2a	$\textbf{0.13}\pm\textbf{0.01}$	7.82	2.03	3.12
2-Pentanone 3a	—	8.97	2.42	3.51
3-Pentanone 4a	$\textbf{0.034} \pm \textbf{0.002}$	8.89	1.74	3.09
Cyclohexanone 5a	$\textbf{6.7}\pm\textbf{0.4}$	0.67	0.21	0.26

^a *K* is the equilibrium constant of acetal formation from methanol observed at 25 °C as referred from J. M. Bell, D. G. Kubler, *et al., J. Org. Chem.*,1965, **30**, 4284-4292. ^b *k* is the rate constant for acetal hydrolysis observed 25 °C referred from M. J. Huggins and D. G. Kubler, *et al., J. Org. Chem.*,1975, **40**, 2813-2815

Fig. S2 GC chart of DEC synthesis using acetal 4 and the corresponding byproduct

Table S4 Acetal screening for the direct synthesis of DEC from CO_2 using Bu_2SnO catalyst with or without $Sc(OTf)_3$ co-catalyst

C	<u>`О.</u>	2 E+OH	Bu ₂ SnC Sc(C), Acetal DTf) ₃	0	Ŧ	H.O	
		2 2011	<i>T</i> (°C)) <i>, t</i> (h)	EtO	Et	1120	
Acetal	Sc(OTf)₃ (mol%)	EtOH (mmol)	Acetal (mmol)	Ketone (mmol)	DEC (mmol)ª	DEC (%) ^b	DEC (%)°	MB (%) ^d
EtO OEt	_	41.1	10.6	2.90	1.59	8	15	85
Me´ Me 1	0.04	42.5	10.7	3.80	2.84	13	26	79
EtOOEt	_	41.9	10.6	3.40	2.03	10	19	80
Me `Et 2	0.04	41.8	10.3	4.42	3.12	15	30	81
EtOOEt	—	41.5	10.2	3.82	2.42	12	24	76
Me´ `Pr 3	0.04	42.4	10.4	4.89	3.51	17	34	75
EtOOEt	_	42.5	10.6	3.77	1.74	8	16	70
Et Et 4	0.04	42.2	10.8	4.61	3.09	15	29	67
OEt	—	41.7	10.6	3.36	0.21	1	2	72
5	0.04	42.2	10.7	2.25	0.26	1	2	37

Reaction conditions: 5 MPa CO₂ at room temperature, 40 mmol EtOH, 10 mmol acetal, 20 mol% Bu_2SnO relative to acetal, 0.04 mol% $Sc(OTf)_3$ relative to acetal, 180 °C, 20 h. ^a Percentage is DEC yield determined by GC using *tert*-butyl toluene as internal standard. ^b DEC yield was calculated based on EtOH. ^c DEC yield was calculated based on acetal. ^d MB = Material balance (%).

	0 +	2 EtOH	H-FAU MS3A	→ ^{Et}	^O V ^{OEt}	+ F	1 ₂ 0	
EtOH /	Acetone	Ethanol	Acetal	Acetal	Conv.	MB	H ₂ O	Adsorbed
Acetone	(mmol)	(mmol)	(mmol)	(%)	(%)	(%) ^c	(%) ^d	H₂O (%) ^e
0.1/0.2	154.3	41.3	21.8	44ª	23	88	0.015	99
0.1/0.1	65.9	41.1	22.1	44ª	34	88	0.034	99
0.2/0.1	48.7	92.8	40.1	40 ^b	51	89	0.038	99
0.4/0.1	46.0	282.9	46.1	46 ^b	51	92	0.047	99
0.6/0.1	43.6	464.8	48.1	48 ^b	56	92	0.055	98
1.0/0.1	44.3	890.8	49.6	50 ^b	56	94	0.064	95
1.5/0.1	42.2	1354.3	50.7	51 ^b	58	93	0.085	96

Table S5 The effect of EtOH/acetone ratio on the synthesis of acetal from acetone

Reaction conditions: 1.275 g H-FAU, 10 g MS3A, 1 h, ambient conditions. ^a Yield based on EtOH, and ^b yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^c Material balance. ^d H₂O content was determined by Karl-Fischer titration. ^e H₂O adsorbed by MS.

Fig. S3 The photograph of H-FAU catalyst after exposed by acetal and acetone and its catalytic activity for formation of acetal

Reaction time	Acetone	Ethanol	Acetal	Acetal	Acetal	MB		
(h)	(mmol)	(mmol)	(mmol)	(%) ^a	difference (%)	(%) ^b		
Start	67.2	1410	27.9	28	_	-		
1	53.9	1369	38	38	10	95		
2	51.9	1361	37	37	9	91		
3	53.2	1362	38	38	10	94		
18	53.2	1329	38	38	10	96		
20	50.8	1351	37	37	9	94		

Table S6 The effect of acetal addition on time profile results of the synthesis of acetal from acetone

 $\begin{array}{c} 0 \\ + 2 & EtOH \\ \end{array} + 2 & EtOH \\ \end{array} + \begin{array}{c} EtO \\ \hline \\ MS3A \end{array} \begin{array}{c} OEt \\ \hline \\ MS3A \end{array} \begin{array}{c} EtO \\ \hline \\ \\ \end{array} \begin{array}{c} OEt \\ \end{array} + \begin{array}{c} H_2O \\ \hline \\ H_2O \end{array}$

Reaction conditions: 0.067 mol acetone, 1.41 mol ethanol, 0.027 mol 2,2-ethoxypropane, 10 g MS3A, 0.85 g H-FAU, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%).

Table S7 The effect of acetal addition with acetal-pretreated catalyst on time profile results of the synthesis of acetal from acetone

	-		-			
Reaction time	Acetone	Ethanol	Acetal	Acetal	Acetal	MB
(h)	(mmol)	(mmol)	(mmol)	(%) ^a	difference (%)	(%) ^b
Start	67.2	1413	27	27	_	-
1	78.8	1415	17	17	-10	102
2	63.5	1369	24	24	-3	93
3	65.7	1393	24	24	-3	95
90	68.3	1423	23	23	-4	95

 $0 + 2 \text{ EtOH} + \frac{\text{EtO}}{27 \text{ mmol}} 0^{\text{OEt}} + \frac{\text{H-FAU-acetal}}{\text{MS3A}} \text{EtO} 0^{\text{OEt}} + \text{H}_2\text{O}$

Reaction conditions: 0.067 mol acetone, 1.41 mol ethanol, 0.027 mol 2,2-ethoxypropane, 10 g MS3A, 0.85 g H-FAU exposed by acetal (H-FAU-acetal), ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%).

		+ 21	EtOH —	H-FAU MS3A	EtO	OEt +	H ₂ O	
MS3A	Acetone	Ethanol	Acetal	Acetal	Conv.	MB	H ₂ O	Adsorbed
(g)	(mmol)	(mmol)	(mmol)	(%) ^a	(%)	(%) ^b	(%) ^c	H₂O (%) ^d
5	64.0	322.9	27.6	28	36	92	0.218	89
7	55.4	300.2	36.6	37	45	89	0.176	93
8	51.8	292.8	41.3	41	48	93	0.056	98
10	46.0	282.9	46.1	46	51	92	0.047	99
12	40.0	262.2	48.1	48	60	88	0.032	99

Table S8 The effect of MS amount on the synthesis of acetal from acetone

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 1.275 g H-FAU, 1 h, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b Material balance. ^c H₂O content was determined by Karl-Fischer titration. ^d H₂O adsorbed by MS.

Table S9 Catalyst screening for the synthesis of acetal from acetone

	0 +	2 EtOH	Catalyst MS3A	→ ^{EtO})Et +	H ₂ O	
Catalyst	Acetone	Ethanol	Acetal	Acetal	Conv.	MB	H₂O
	(mmol)	(mmol)	(mmol)	Yield (%) ^a	(%)	(%) ^ь	(%) ^c
H-FAU	46.0	282.9	46.1	46	54	92	0.047
SZ	71.1	326.8	27.3	27	60	90	0.041
Dowex	26.6	271.0	26.6	27	44	82	0.132
Nafion	56.1	284.8	40.6	41	44	97	0.098
Amberlyst	49.8	282.5	45.3	45	50	95	0.062

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 10 g MS3A, 0.09 mmol H⁺, H-FAU \rightarrow 1 h, SO₄²⁻/ZrO₂, Dowex \rightarrow 2 h, Nafion \rightarrow 3 h, and Amberlyst \rightarrow 2 h, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). ^c H₂O content was determined by Karl-Fischer titration.

	0 +	2 EtOH	Catalyst MS3A	→ ^{EtO})Et +	H ₂ O	
Catalyst	Acetone	Ethanol	Acetal	Acetal	Conv.	MB	H₂O
	(mmol)	(mmol)	(mmol)	Yield (%) ^a	(%)	(%) ^b	(%) ^c
H-FAU	46.0	282.9	46.1	46	54	92	0.047
SZ	71.1	326.8	27.3	27	60	90	0.041
Dowex	26.6	271.0	26.6	27	44	82	0.132
Nafion	56.1	284.8	40.6	41	44	97	0.098
Amberlyst	49.8	282.5	45.3	45	50	95	0.062

Table S10 Catalyst screening for the synthesis of acetal from acetone

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 10 g MS3A, 0.09 mmol H⁺, H-FAU \rightarrow 1 h, SO₄²⁻ /ZrO₂, Dowex \rightarrow 2 h, Nafion \rightarrow 3 h, and Amberlyst \rightarrow 2 h, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). ^c H₂O content was determined by Karl-Fischer titration.

Table S11 Proton amount and chemical structure of the used ion exchange resins

Catalyst	H⁺ (mmol/g)	Chemical structure
Dowex 50Wx2	0.6	SO3H
Nafion-NR50	0.8	$ \begin{bmatrix} F & F \\ F & F \end{bmatrix}_{x} \begin{bmatrix} F & F \\ F & F \end{bmatrix}_{y} \\ \begin{bmatrix} F & F \\ O & F \end{bmatrix}_{z} \begin{bmatrix} F & F \\ O & F \end{bmatrix}_{z} \begin{bmatrix} F & O \\ O & F \end{bmatrix}_{z} = OH $
Amberlyst-15	4.7	SO ₃ H

	+	2 EtOH	Amberlyst MS3A	EtO OEt	+ H ₂ O	
Time	Acetone	Ethanol	Acetal	Acetal	Conversion	MB
(h)	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%)	(%) ^b
1	53.8	294.5	42.3	42	46	96
2	49.8	282.5	45.3	45	50	95
3	54.8	288.4	40.0	40	45	95
4	54.8	288.9	36.6	37	45	91
5	58.2	294.5	34.6	35	42	93
22	57.3	288.7	27.2	27	43	85
24	58.8	289.5	27.6	28	41	86

Table S12 Synthesis of acetal from acetone using Amberlyst catalyst

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 10 g MS3A, 0.2 g Amberlyst, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). H₂O content determined by Karl-Fischer titration was 0.004% (at 0 h) \rightarrow 0.062% (24 h).

Table S13 Synthesis of acetal from methyl ethyl ketone (MEK) using Amberlyst catalyst

	Me	+ 2 EtOH	Amberlyst MS3A	Me Et	+ H ₂ O		
Time	MEK	Ethanol	Acetal	Acetal	Conversion	MB	
(h)	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%)	(%) ^b	
1	71.7	284.5	34.6	35	28	106	
2	62.1	260.7	43.8	44	38	106	
3	59.4	250.9	46.3	46	41	106	
5	63.9	255.8	41.7	42	36	106	
22	70.5	261.0	30.1	30	29	101	
24	69.7	257.9	30.3	30	30	100	

Reaction conditions: 0.1 mol MEK, 0.4 mol ethanol, 10 g MS3A, 0.2 g Amberlyst, ambient conditions. ^a Yield based on acetone determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). H₂O content determined by Karl-Fischer titration was 0.004% (0 h) \rightarrow 0.043% (24 h).

	Me Pr +	2 EtOH	Amberlyst MS3A	► EtO Me	DEt ₊ H ₂ ' Pr	0
Time	МРК	Ethanol	Acetal	Acetal	Conversion	MB
(h)	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%)	(%) ^b
1	71.1	322.3	32.3	32	29	103
2	67.7	312.9	37.7	38	32	105
3	66.0	298.2	36.8	37	34	103
5	70.0	302.7	32.6	33	30	103
22	75.4	304.4	24.3	24	25	100
24	75.7	304.3	24.3	24	24	100

Table S14 Synthesis of acetal from methyl propyl ketone (MPK) using Amberlyst catalyst

Reaction conditions: 0.1 mol methyl propyl ketone, 0.4 mol ethanol, 10 g MS3A, 0.2 g Amberlyst, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). H₂O content determined by Karl-Fischer titration was 0.004% (at 0 h) \rightarrow 0.030% (24 h).

Table S15 Synthesis of acetal from diethyl ketone using Amberlyst catalyst

	Et Et +	2 EtOH	Amberlyst MS3A	EtO O Et Et	^{Et} + H ₂ O t	
Time	Diethyl ketone	Ethanol	Acetal	Acetal	Conversion	MB
(h)	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%)	(%) ^b
1	44.8	178.6	5.8	12	10	101
2	42.1	168.8	8.0	16	16	100
3	41.1	164.7	9.1	18	18	100
5	40.1	158.8	9.7	19	20	100
22	39.5	153.8	9.7	19	21	98
24	39.2	152.7	9.7	19	22	98

Reaction conditions: 0.05 mol diethyl ketone, 0.2 mol ethanol, 5 g MS3A, 0.1 g Amberlyst, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). H₂O content determined by Karl-Fischer titration was 0.004% (at 0 h) \rightarrow 0.020% (24 h).

Table S16 Synthesis of acetal from cyclohexanone using Amberlyst catalyst

C	$\begin{array}{c} & & \\$								
Time	Cyclohexanone	Ethanol	Hemiacetal	Acetal	Acetal	Conversion	MB		
(h)	(mmol)	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%)	(%) ^b		
1	22.4	227.9	18.7	59.0	59	78	100		
2	25.8	231.3	16.4	57.8	58	74	100		
5	31.1	237.3	16.8	52.2	52	69	100		
22	32.1	246.2	1.2	66.8	67	68	99		
24	31.5	216.5	1.4	67.5	68	68	100		

Reaction conditions: 0.1 mol cyclohexanone, 0.4 mol ethanol, 10 g MS3A, 0.2 g Amberlyst, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b Material balance = [(mole of acetal + mole of hemiacetal + mole of cyclohexanone)/initial mole of cyclohexanone] × 100 %. H₂O content determined by Karl-Fischer titration was 0.004% (at 0 h) \rightarrow 0.208% (24 h).

Table S17 Results of catalytic reusability on acetal synthesis using normal method

0 + 2 EtOH —	Catalyst MS3A	EtO OEt	+	H ₂ O
--------------	------------------	---------	---	------------------

Dum	Reaction	Acetone	Ethanol	Acetal	Acetal	MB	H ₂ O content			
Kun	scale	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%) ^b	(%) ^c			
H-FAU										
1	1	49.3	299.6	50.0	50	99	0.036			
2	0.98	68.0	327.7	26.1	27	96	0.006			
3	0.96	87.7	37.7 361.7 6.1		6	98	0.000			
			N	lafion						
1	1	50.1	256.9	44.2	44	94	0.026			
2	1	53.3	271.0	44.1	44	97	0.019			
3	1	48.5	261.5	45.3	45	94	0.024			
4	1	52.6	266.0	43.0	43	96	0.031			
5	1	48.9	136.2	46.3	46	97	0.042			

Amberlyst										
1	1	51.5	271.6	46.7	47	98	0.028			
2	0.89	47.3	245.7	40.5	45	99	0.028			
3	0.76	38.5	207.3	36.5	48	99	0.033			
4	0.30	14.9	84.7	15.3	50	101	0.042			
5	0.13	6.3	33.4	5.3	42	99	0.040			

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 10 g MS3A, H-FAU \rightarrow 1.275 g, Nafion \rightarrow 5.1 g, and Amberlyst \rightarrow 0.2 g, 2 h, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). ^c H₂O content was determined by Karl-Fischer titration.

Table S18 Results of catalytic reusability on acetal synthesis using SpinChem method

Bum	Reaction	Acetone	Ethanol	Acetal	Acetal	MB	H ₂ O content		
Kun	scale	(mmol)	(mmol)	(mmol)	yield (%) ^a	(%) ^ь	(%) ^c		
			H-1	FAU					
1	1	55.1	346.7	27.2	27	82	0.089		
2	0.89	53.3	312.6	22.3	25	85	0.165		
3	0.70	39.5	243.3	19.0	27	84	0.280		
4	0.61	26.1	223.1	15.7	26	83	0.367		
5	0.53	36.7	193.1	5.9	11	81	0.236		
Nafion									
1	1	73.7	371.2	19.8	20	94	0.080		
2	1	56.4	318.4	25.0	25	81	0.062		
3	1	59.9	341.1	25.0	25	85	0.075		
4	1	61.3	345.4	26.3	26	88	0.052		
5	1	58.2	334.9	29.4	29	88	0.047		
			Amb	erlyst					
1	1	55.2	340.1	30.8	31	86	0.049		
2	1	61.9	332.9	33.9	34	96	0.047		
3	1	61.0	331.2	35.9	36	97	0.067		
4	1	61.2	334.6	36.6	37	98	0.062		

5	1	63.4	338.4	35.2	35	99	0.067

Reaction conditions: 0.1 mol acetone, 0.4 mol ethanol, 10 g MS3A, H-FAU \rightarrow 1.275 g, Nafion \rightarrow 5.1 g, and Amberlyst \rightarrow 1.0 g, 24 h, ambient conditions. ^a Yield based on acetone was determined by GC using *tert*-butyl toluene as an internal standard. ^b MB = Material balance (%). ^c H₂O content was determined by Karl-Fischer titration.

Fig. S4 The photograph of used catalyst and its appearance after heating treatment at 500 °C.

Fig. S5 The photograph of normal and SpinChem reactor system

Fig. S6 ¹H NMR of acetal 2 synthesized from 2a

Fig. S7 $^{13}C{^{1}H}$ NMR of acetal 2 synthesized from 2a

Fig. S8 ¹H NMR of acetal 3 synthesized from 3a

Fig. S9 ¹³C{¹H} NMR of acetal 3 synthesized from 3a

Fig. S10 ¹H NMR of acetal 4 synthesized from 4a

Fig. S11 $^{13}\text{C}\{^1\text{H}\}$ NMR of acetal 4 synthesized from 4a

		<u>(</u> 0-	Reaction cond		DEC	Viold			
No	Catalyst	catalvst	Dehydrating agent or	CO ₂	Т	Time	(mmol)	(%)	Ref.
			reactant	(MPa)	(K)	(h)	((, -)	
1	Bu₂SnO	_	_	5	433	24	n d	n d	This
-	Buzono			5	455	24	n.a.	n.a.	work
2	Bu ₂ SnO	Sc(OTf)₃	_	5	433	24	n.d.	n.d.	This
_		();		-					work
3	_	_	2,2-diethoxypropane	5	433	24	0.01	0.1	This
									work
4	-	Sc(OTf)₃	2,2-diethoxypropane	5	433	24	0.12	1.1	This
									WORK
5	Bu₂SnO	-	2,2-diethoxypropane	5	433	24	1.59	15	Inis
									WOIK
6	Bu₂SnO	Sc(OTf)₃	2,2-diethoxypropane	5	433	24	2.84	26	work
			Tetraethyl						WORK
7	Bu₂SnO	-	orthosilicate (TEOS)	5	453	24	2.1	40	S1
8	Bu ₂ SnO	_	Triethyl orthoacetate	5	453	24	7.8	68	S1
•	2020110		Tetraethyl	Ū.					
9	Zr(OEt)4	-	orthosilicate (TEOS)	5	453	20	3.8	48	S2
10	CeO ₂	_	2,2-diethoxypropane	5	393	4	0.8	4	S3
11	CeO ₂	H-FAU	2,2-diethoxypropane	5	393	4	13.1	62	S3
12	CeO ₂	-	Triethyl orthoacetate	5	433	24	6.3	64	S4
13	CeO ₂	-	2-cyanopyridine	5	393	24	9.1	91	S5

Table S19. Comparison of the direct synthesis of DEC based on previous reports and present work

Reference

- S1 W. S. Putro, Y. Munakata, S. Shigeyasu, S. Hamur, S. Matsumoto, J. C. Choi and N. Fukaya, Mendeleev Commun., 2022, **32**, 54–56.
- S2 W. S. Putro, A. Ikeda, S. Shigeyasu, S. Hamura, S. Matsumoto, V. Y. Lee, J.-C. Choi and N. Fukaya, *ChemSusChem*, 2020, **14**, 842–846.
- S3 T. Chang, M. Tamura, Y. Nakagawa, N. Fukaya, J.-C. Choi, T. Mishima, S. Matsumoto, S. Hamura and K. Tomishige, *Green Chem.*, 2020, 22, 7321–7327.
- W. S. Putro, Y. Munakata, S. Ijima, S. Shigeyasu, S. Hamura, S. Matsumoto, T. Mishima, K. Tomishige, J.-C. Choi and N. Fukaya, J. CO₂ Util., 2022, 55, 101818.
- S5 M. Honda, M. Tamura, Y. Nakagawa, K. Nakao, K. Suzuki and K. Tomishige, J. Catal., 2014, **318**, 95–107.