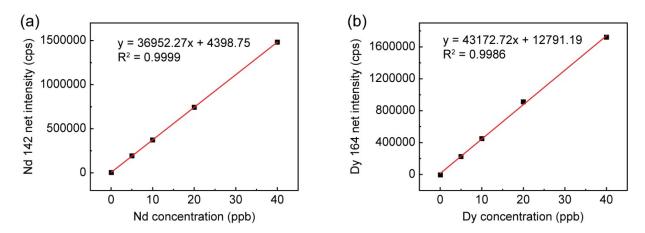
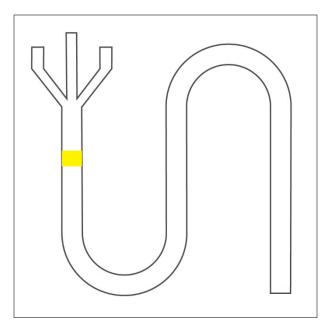

Supplementary information

Flow-driven enhancement of neodymium and dysprosium separation from aqueous solutions


Qingpu Wanga and Chinmayee V. Subban*ab

- a. Energy and Environment Directorate, Pacific Northwest National Laboratory, Seattle, Washington 98109, United States.
- b. Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.


E-mail: chinmayee.subban@pnnl.gov

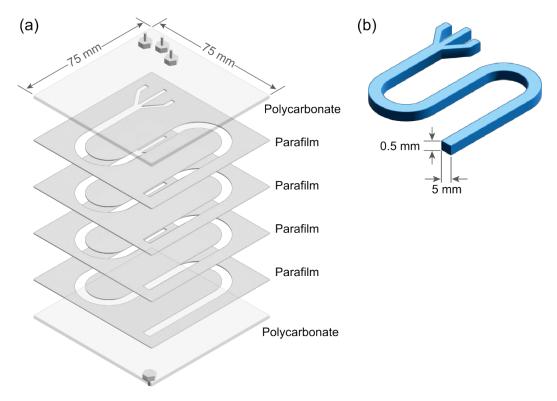

Fig. S1 Powder XRD patterns the pure $Nd(DBP)_3$ (a) and $Dy(DBP)_3$ (b) precipitates obtained using BMM. In these experiments, 5 mL of 12 mM NaDBP were added to 5 mL 4 mM $NdCl_3$ or $DyCl_3$, and then stirred for 45 min at room temperature.

Fig. S2 ICP-MS calibration curves for Nd(a) and Dy(b). The concentrations of the standard solutions were 0.05, 5, 10, 20, and 40 ppb, respectively. The red lines are linear fits.

 $\textbf{Fig. S3} \ \mathsf{Location} \ \mathsf{where} \ \mathsf{the} \ \mathsf{time-lapse} \ \mathsf{data} \ \mathsf{were} \ \mathsf{collected}.$

Fig. S4 Schematics of the flow device for separation. (a) Deconstructed view. (b) Reaction chamber with four layers of parafilm.

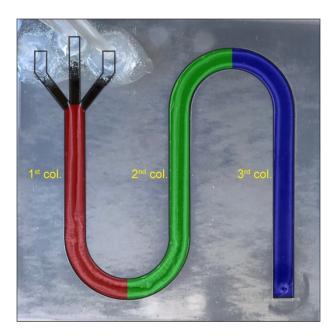


Fig. S5 Definition of the column numbers.

Table S1. Crystallite sizes of $Nd(DBP)_3$ and $Dy(DBP)_3$ precipitates obtained by LCM and BMM. The values were calculated using the Scherrer equation. The instrumental broadening was obtained using the XRD pattern of a LaB₆ standard.

Method	Nd(DBP) ₃ Dy(DBP) ₃ (Å) (Å)	
LCM	1620.8	757.7
ВММ	511.5	779.2

Table S2. Saturation indices (SI) for $Nd(DBP)_3$ and $Dy(DBP)_3$ at different concentration conditions.

[NdCl ₃] (mM)	[DyCl₃] (mM)	[NaDBP] (mM)	SI for Nd(DBP) ₃	SI for Dy(DBP) ₃
4	4	120	8.7	12.4
4	4	36	7.2	10.8
4	4	12	5.7	9.4
4	4	4	4.3	7.9
4	4	1.2	2.7	6.4
4	9.33	1.2	2.7	6.7
4	1	1.2	2.7	5.8

Movie S1. Time-lapse movie showing precipitation formation in the microfluidic device for different NaDBP concentrations. In these experiments, the middle subchannel contained 1.2-120 mM NaDBP, while solutions of 4 mM NdCl $_3$ and 4 mM DyCl $_3$ were on the sides.