Electronic Supplementary Information (ESI)

Eggshell incorporated agro-waste adsorbent pellets for sustainable orthophosphate capture from aqueous media

Bernd G.K. Steiger¹, Nam Bui¹, Bolanle Babalola¹ and Lee D. Wilson^{1*}

¹Department of Chemistry, University of Saskatchewan, 110 Science Place - Room 156 Thorvaldson Building, Saskatoon, SK S7N 5C9, Canada

*Corresponding author: L. D. Wilson (Tel. +1-306-966-2961; lee.wilson@usask.ca)

This ESI material includes the following content:

Methods

TGA, XRD, FT-IR Spectroscopy, NMR Spectroscopy, and Surface Area via PNP Dye Adsorption

Tables

 Table S1.
 Isotherm parameter for orthophosphate adsorption at pH 4.5 onto C22.

Table S1: Isotherm parameters for orthophosphate adsorption at pH 8.5 onto the agro-waste composites.

Table S2: Equations and parameters of both Freundlich and Langmuir adsorption isotherm models.

Figures

Fig. S1 – Digital image of the mold/tray used to prepare the samples with scale.

Fig. S1: DTG profiles (A) of pristine calcium carbonate as comparison to eggshells (washed) and their respective weight loss profiles (B).

Fig. S2: DTG profiles (A) of torrefied wheat straw (TWS) and chitosan and their TG profiles (B) respectively.

Fig. S3: FT-IR spectra of the raw materials used to prepare the pelletized adsorbents.

Fig. S4: Orthophosphate adsorption isotherm study of C72 at pH 4.5.

Fig. S5: Orthophosphate adsorption isotherm study of C20 at pH 4.5.

Fig. S6: Orthophosphate adsorption isotherm study of C21 at pH 4.5.

Fig. S7: Orthophosphate isotherms (Sips Isotherm Model) at pH 8.5 on C72 (A), C20 (B), C21 (C) and C22 (D).

S1. Methods

TGA

The ground samples were subjected to a heating rate of 10° C/min after equilibration of 1 min at 30 °C in an open aluminium pan in a N₂ atmosphere. Only the obtained TG curves were normalized via "divide by max".

XRD

A CuK α radiation (40 kV and 30 mA) with λ = 1970.1541 nm was used over a 2 θ angle range from 5° to 80° to obtain the powder XRD (PXRD) profiles.

FT-IR Spectroscopy

Samples were ground with KBr (FT-IR grade) and a sample powder in a 10:1 ratio (KBr to sample) with a mortar and pestle. The spectra were recorded at 295 K over a spectral range of 400-4000 cm⁻¹ with a 4 cm⁻¹ resolution, including normalization, according to a [0,1] scale. A minimum of 64 scans were recorded and the spectral background was corrected against pure KBr.

NMR Spectroscopy

The CP-TOSS method (cross-polarization with total suppression of spinning sidebands) was used to collect the ¹³C NMR spectra. The sample spinning speed was 7.5 kHz, and a ¹H 90° pulse on the ¹H channel. Spectral acquisition employed up to 20k scans with a cycle delay of 1 s with 50 kHz SPINAL-64 decoupling sequence. The ¹³C shifts were referenced to adamantane (38.48 ppm low field signal). The spectra were normalized according to a [0,1] scale.

Surface Area via PNP Dye Adsorption

A fixed amount (20 mg) of the TWCs were added to 10 mL of PNP solution (0.5-20 mM, buffered with 30 mM acetic acid or carbonate at pH 4.5 or 8.5). The solutions were equilibrated overnight on an orbital shaker at ca. 22 $^{\circ}$ C and measured in duplicate.

Sips Parameter	Q (mg/g)	Ka	n	R²
C72	22.9 ± 7.7	0.0018 ± 0.001	2.1 ± 1.3	0.967
C20	28.1 ± 6.1	0.0014 ± 0.0004	2.3 ± 0.7	0.989
C21	30.1 ± 12	0.0015 ± 0.001	1.7 ± 0.9	0.971
C22	22.2 ± 2.1	0.0095 ± 0.0009	1.3 ± 0.3	0.969
Langmuir Parameter	Q	К		R²
C72	62.0 ± 38.6	0.0005 ± 0.0	0.949	
C20	65.4 ± 64.0	0.0005 ± 0.0007		0.778
C21	73.5 ± 47.5	0.0003 ± 0.0	0003	0.966
C22	31.5 ± 3.7	0.0021 ± 0.0	0048	0.954
Freundlich Parameter		К	n	R²
C72	0.077 ± 0.10 1.3 ± 0.3		1.3 ± 0.3	0.936
C20	0.013 ± 0.02 1.0 ± 0.2		1.0 ± 0.2	0.973
C21	0.050 ± 0.05 1.2 ± 0.2		0.960	
C22	0.68 ± 0.48 2.0		2.0 ± 0.4	0.880

 Table S1: Isotherm parameter for orthophosphate adsorption at pH 4.5-onto C22.

 Table S2: Isotherm parameters for orthophosphate adsorption at pH 8.5 onto the agro-waste composites.

Sips Parameter	Q (mg/g)	Ka	n	R ²	
C72	12.1 ± 0.7	0.005 ± 0.001	2.02 ± 0.26 0.98132		
C20	11.6 ± 1.2	0.005 ± 0.001	2.31 ± 0.21 0.93548		
C21	8.90 ± 1.4	0.007 ± 0.002	1.28 ± 0.36 0.92976		
C22	10.3 ± 1.1	0.009 ± 0.001	3.11 ± 0.46 0.98837		
Langmuir	Q	К	R ²		
Parameter					
C72	29.5 ± 7.0	0.0008 ± 0.0003	0.94827		
C20	25.3 ± 6.3	0.0009 ± 0.0004	0.92938		
C21	16.4 ± 2.6	0.0018 ± 0.0006	18 ± 0.0006 0.91077		
C22	10.8 ± 1.3 0.0080 ± 0.0026		0.83442		
Freundlich	К		n	R ²	
Parameter					
C72	0.05 ± 0.01		1.2 ± 0.1	0.98009	
C20	0.07 ± 0.04		1.3 ± 0.2	0.91198	
C21	0.16 ± 0.07		1.6 ± 0.2	0.91329	
C22	0.49 ± 0.28		2.1 ± 0.4	0.75437	

Table	S3: Eauations	and paramete	ers of both	Freundlich and	l Lanamuir	adsorption	isotherm models.

Freundlich Isotherm	$q_e = K_f C_e^{\frac{1}{n}}$	 q_e = monolayer adsorption capacity at equilibrium C_e = equilibrium adsorbate concentration K_f = Freundlich constant n = Freundlich exponent
Langmuir Isotherm	$q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$	 q_m = equilibrium monolayer adsorption capacity K_L = Langmuir adsorption constant C_e = adsorbate concentration at equilibrium q_e = bound adsorbate concentration

Figure S1: Digital image of the mold/tray used to prepare the samples with scale.

Figure S2: DTG profiles (A) of pristine calcium carbonate as comparison to eggshells (washed) and their respective weight loss profiles (B). Note. 2.7 wt-% of organic matter was estimated on the ES sample after washing, which compares to ca. 4.1 wt-% before washing.

Figure S3: DTG profiles (A) of torrefied wheat straw (TWS) and chitosan and their TG profiles (B) respectively.

Figure S4: FT-IR spectra of the raw materials used to prepare the pelletized adsorbents.

Figure S5: Orthophosphate adsorption isotherm study of C72 at pH 4.5.

Figure S6: Orthophosphate adsorption isotherm study of C20 at pH 4.5.

Figure S7: Orthophosphate adsorption isotherm study of C21 at pH 4.5.

Figure S8: Orthophosphate isotherms (Sips Isotherm Model) at pH 8.5 on C72 (A), C20 (B), C21 (C) and C22 (D).