Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary information

Crystal graph convolution neural networks for fast and accurate prediction of adsorption ability of Nb₂CT_x towards Pb(II) and Cd(II) ions

Zeeshan Haider Jaffari ^a, Ather Abbas ^a, Muhammed Umer ^b, Eun-Sik Kim ^{c, *}, Kyung Hwa Cho ^{a,d, *}

^a School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

^b Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

^c Department of Environmental System Engineering, Chonnam National University, Daehakro 50, Yeosu 59626, Republic of Korea

^d Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea

* Corresponding authors: eskim@jnu.ac.kr (E.-S. Kim), khcho@unist.ac.kr (K. H. Cho):

These co-corresponding authors contributed equally to this work.

Fig. S1. Top view of the optimized crystal structure of Nb_2CT_x with $3 \times 3 \times 1$ supercell. (S1–S3) represent the possible adsorption sites for heavy metal ions.

Fig. S2. Plot of DFT calculated lowest binding energy values at different distances for Pb(II)andCd(II)ionson Nb_2CT_x surface.

Fig. S3. Predicted binding energy surfaces at different distances from the surface of Nb_2CT_x for (a) Pb(II) ions and (b) Cd(II) ions.

Fig. S4. Top views of the predicted adsorption energy surfaces at different distances from Nb_2CT_x structure for (a) Pb(II) ions and (b) Cd(II)

ions.

Fig. S5. EDP plot for binding energies of the CGCNN model.

Fig. S6. Comparison between DFT calculated and CGCNN predicted adsorption energies for surface-defected Nb_2CT_x (a) Pb(II) and (b) Cd(II) ions.

Fig. S7. FESEM analysis of (a) Nb₂AlC, (b) Nb₂CT_x samples, EDX analysis of (c) Nb₂AlC and (d) Nb₂CT_x samples, EDX elemental mapping of Nb₂AlC (e) SEM image of selected region, (f) Nb, (g) Al, (h) C element, and EDX elemental mapping of Nb₂CT_x (i) SEM image of selected region (j) Nb, (k) C and (l) O element.

Fig. S8. (a) XRD patterns of the recycled Nb₂CT_x and (b) FESEM image of recycled Nb₂CT_x, EDX mapping of recycled Nb₂CT_x (c) SEM image of selected region (d) Nb, (e) C and (f) O element.

Table S1: Hyperparameters	of the	CGCNN	model
---------------------------	--------	-------	-------

Hyperparameters	Ranges
epochs	100
Batch size	16
Learning rate	0.001
Number of hidden atom features in the convolution layers	64
Number of convolution layers	3
Number of hidden features after pooling	1
Regularization term λ^a	e^{-6} , e^{-4} , e^{-2} , e^{-0}
2	

a L2 regularization term $\lambda^{\|W\|_2^2}$ is inserted to cost function to decline the overfitting.