Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information for

Ultrahigh energy storage density, high efficiency and superior thermal stability in Bi_{0.5}Na_{0.5}TiO₃-based relaxor ferroelectric ceramics *via* constructing multiphase structures

Yi-Ning Huang¹, Ji Zhang^{1,*}, Jiajia Wang¹, Jing Wang^{2,*}, Yaojin Wang^{1,*}

¹ School of Materials Science and Engineering, Nanjing University of Science & Technology, Nanjing 210094, China

² State Key Laboratory of Mechanics and Control of Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

*Corresponding authors: jizhang@njust.edu.cn; wang-jing@nuaa.edu.cn; yjwang@njust.edu.cn

Experimental Procedure

 $(1-x)Bi_{0.5}Na_{0.5}TiO_3-xBa_{0.7}Sr_{0.3}Zr_{0.8}Sn_{0.2}O_3$ ceramics with x = 0, 0.10, 0.15, 0.00, 0.25 were fabricated by solid-state reaction. High purity oxides and carbonate of Bi₂O₃ (99.9%), Na₂CO₃ (99.99%), TiO₂ (99%), BaCO₃ (99.95%), SrCO₃ (99.95%), ZrO₂ (99%), SnO₂ (99.5%, all from Aladdin) were selected as starting materials and weighted according to designed composition. Then, all the weighted powders were mixed with ethanol and with ZrO₂ balls in nylon tank by a planetary ball mill. Afterwards, the slurry was dried, and calcined at 800°C. Subsequently, the calcined powders were ball-milled again, dried and mixed with polyvinyl butyral as binder, then pressed into disks with thickness of ~1 mm and diameter of ~10 mm under 10 MPa. The binder was removed at 600°C with increasing rate of 2°C/min. Eventually, the green disks were pressed again under 120 MPa by cold isostatic pressing and sintered at 1150°C. The increasing and decreasing rate for temperature variety were both 5°C/min. During sintering, the samples were embedded in powders with the same composition to suppress the volatilization of Bi and Na.

Crystalline structure of ceramics was detected by X-ray diffraction (XRD, PANalytical), and the FULLPROF software was adopted to perform the structural refinement. The microstructure was confirmed by field-emission scanning electron microscopy (SEM, Zeiss Ultra-55). For dielectric property measurements, the surfaces of the polished disks were covered with silver paste and fired at 550 °C for 30 min. The temperature-dependent permittivity (ε_r) and loss (tan δ) were measured using an LCR meter (Agilent E4980A, Santa Clara, CA) at various frequencies. The specific electric

breakdown strength of each sample was collected by a voltage-withstand test device (Trek 610D, PolyK Technologies), and the polarization-electric field (*P-E*) curves were tested by a ferroelectric analyzer (Radiant Technologies). The charge-discharge property was characterized by a specially RLC load circuit (PK-CPR1701, PolyK Technologies). For *P-E* loops and direct charge/discharge, the sample thickness and electrode area are 0.1 mm and 0.785 mm² (1 mm in diameter).

Fig. S1 XRD patterns of (1-*x*)BNT-*x*BSZS ceramics.

	x = 0	<i>x</i> = 0.10		<i>x</i> = 0.15		<i>x</i> = 0.20		<i>x</i> = 0.25	
Space	D 2 -	R3c	P4bm	R3c	P4bm	R3c	P4bm	R3c	P4bm
group	R3c	(84%)	(16%)	(67%)	(33%)	(56%)	(44%)	(32%)	(68%)
a (Å)	5.4816	5.5465	5.5503	5.5706	5.5685	5.5940	5.5935	5.6171	5.6155
<i>b</i> (Å)	5.4816	5.5465	5.5503	5.5706	5.5685	5.5940	5.5934	5.6171	5.6155
c (Å)	13.5342	13.5834	3.9230	13.6411	3.9393	13.7022	3.9594	13.7536	3.9745
α	90°	90°	90°	90°	90°	90°	90°	90°	90°
β	90°	90°	90°	90°	90°	90°	90°	90°	90°
γ	120°	120°	90°	120°	90°	120°	90°	120°	90°
Cell	352.195	261.005	100.050	266 502	100 1 10	0.51.005	100.055	275.000	105.000
volume		361.885	120.853	53 366.593	122.148	371.335	123.875	375.809	125.332
$R_{\rm wp}$	6.56	8.42		7.92		7.90		8.30	
$R_{\rm p}$	4.83	4.75		4.65		4.68		4.64	
χ^2	5.25	9.25		7.91		7.15		8.94	

Table S1 The Refined structural parameters of (1-x)BNT-xBSZS ceramics.

Fig. S2 Temperature-dependent permittivity (ε_r) and loss (tan δ) of (a) x = 0.10, (b) x = 0.15, (c) x = 0.25.

Table S2 β values of BNT-BSZS ceramics.

Composition	x = 0 $x = 0.10$		<i>x</i> = 0.15	<i>x</i> = 0.20	<i>x</i> = 0.25	
β	18.1	13.7	8.5	12.7	10.1	

Fig. S3 SEM morphologies of BNT-BSZS ceramics and corresponding grain size distribution: (a) x = 0, (b) x = 0.10, (c) x = 0.15, (d) x = 0.20, (e) x = 0.25.

Fig. S4 UV-vis absorption spectrum of BNT-BSZS ceramics.

Fig. S5 Electric field dependent P_{max} , P_{r} and P_{max} - P_{r} of (a) x = 0.10, (b) x = 0.15, (c) x = 0.20, (d) x = 0.25,

T 11 02 0 ·	C A	· 1 ·	1 1	1 1
Lable N Comparison	i of energy storage	nronerfies between	this work and	i recentiv
Tuble 55 Comparison	i oi energy storage	properties between	und work und	i recentry

reported BNT-based ceramics.

Compositions	E (kV/cm)	$W_{\rm rec}$ (J/cm ³)	η (%)	Reference
x = 0.10	265	4.9	82	This work
x = 0.15	340	6.3	87.5	This work
x = 0.20	400	7.4	88.7	This work
x = 0.25	460	6.6	90.2	This work
$\begin{array}{c} 0.62Na_{0.5}Bi_{0.5}TiO_{3}\text{-}0.3Sr_{0.7}Bi_{0.2}TiO_{3}\text{-}\\ 0.08BiMg_{2/3}Nb_{1/3}O_{3}\end{array}$	470	7.5	92	7
$\begin{array}{c} 0.90 (Bi_{0.5}Na_{0.5})_{0.65}Sr_{0.35}TiO_{3}\text{-} \\ 0.10Bi (Mg_{0.5}Zr_{0.5})O_{3} \end{array}$	522	8.46	85.9	9
$0.55Bi_{0.5}Na_{0.5}TiO_3\text{-}0.45Sr_{0.7}La_{0.2}TiO_3$	338	4.14	92.2	13
0.8(0.95Bi _{0.5} Na _{0.5} TiO ₃ -0.05SrZrO ₃)- 0.2NaNbO ₃	350	5.55	85	23
$\begin{array}{c} 0.85(Bi_{0.5}Na_{0.5})_{0.7}Sr_{0.3}TiO_{3}\text{-}\\ 0.15Bi(Mg_{0.5}Sn_{0.5})O_{3}\end{array}$	280	3.76	78.8	26
$0.80Bi_{0.5}Na_{0.5}TiO_3\text{-}0.20SrNb_{0.5}Al_{0.5}O_3$	520	6.64	96.5	29
$0.84 Bi_{0.5} Na_{0.5} TiO_3$ -0.16KNbO ₃	320	5.2	88	30
$0.78(Bi_{0.5}Na_{0.5})TiO_3$ - $0.22NaNbO_3$	390	7.02	85	31
0.7(0.85Bi _{0.5} Na _{0.5} TiO ₃ -0.15NaNbO ₃)- 0.3(Sr _{1.05} Bi _{0.3})ScO ₃	540	7.3	80	32
$0.90(Na_{0.5}Bi_{0.5})_{0.7}Sr_{0.3}TiO_{3}-$ $0.10Bi(Ni_{0.5}Sn_{0.5})O_{3}$	270	4.18	83.64	33
$\begin{array}{c} 0.86(Na_{0.5}Bi_{0.5})_{0.6}Sr_{0.4}TiO_{3}\text{-}\\ 0.14Sr_{0.7}La_{0.2}ZrO_{3}\end{array}$	322	3.45	90.1	34
$0.85 Na_{0.5} Bi_{0.5} TiO_3 0.15 CaZr_{0.5} Ti_{0.5} O_3$	297.7	4.37	81.4	35
$0.5 Na_{0.5} Bi_{0.5} TiO_3 \text{-} 0.5 Sr_{0.85} Sm_{0.1} TiO_3$	422	5.02	90	36
$0.6Bi_{0.5}Na_{0.5}TiO_30.4Sr_{0.7}Sm_{0.2}TiO_3$	260	3.52	84.2	37
$\begin{array}{l} 0.86 (0.93 Na_{1/2} Bi_{1/2} Ti O_3 \hbox{-} 0.07 Ba Ti O_3) \hbox{-} \\ 0.14 K_{1/2} Bi_{1/2} (Zn_{1/3} Nb_{2/3}) O_3 \end{array}$	290	5.1	80	38
0.45Na _{0.5} Bi _{0.5} TiO ₃ - 0.55Sr _{0.7} Bi _{0.2} TiO ₃ /6wt%AlN	360	5.53	90	39
0.6[0.955(Bi _{0.5} Na _{0.5})TiO ₃ - 0.045Ba(Al _{0.5} Ta _{0.5})O ₃]-0.4CaTiO ₃	440	5.81	97.8	40
0.7Na _{0.5} Bi _{0.5} TiO ₃ - 0.3NaNbO ₃ /7wt%CaZr _{0.5} Ti _{0.5} O ₃	410	4.93	93.3	41
$\begin{array}{c} 0.65 Bi_{0.5} Na_{0.4} K_{0.1} TiO_3 \text{-} 0.35 [2/3 SrTiO_3 \text{-} \\ 1/3 Bi(Mg_{2/3} Nb_{1/3})O_3] \end{array}$	290	4.43	86	42
0.75Bi _{0.58} Na _{0.42} TiO ₃ -0.25SrTiO ₃	535	5.63	94	43

Fig. S6 Evolution of P_{max} , P_{r} and P_{max} - P_{r} of x = 0.2 under different temperatures, frequencies and cycling numbers.