Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Universal assembly of ordered Ag nanowires micromesh conductor on arbitrary substrates by manipulating the contact angle

Bowen Sun,^{abcd} Jing Xu,^a Wang Hong,^a Zhiwei Fu,^a Shouguo Zheng,^{de} Zede Zhu,^{de} Rong Cai^f and Kai Qian *^{abcd}

^aSchool of Microelectronics, Shandong University, Jinan, 250100, China
^bShenzhen Research Institute of Shandong University, Shenzhen, 518057, China
^cSuzhou Research Institute of Shandong University, Suzhou, 215123, China
^dLu'an Branch, Anhui Institute of Innovation for Industrial Technology, Lu'an,237100, China
^eHefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
^fSchool of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
*E-mail: kaigian@sdu.edu.cn

Fig. S1 Contact angle of Ag NWs ink effect on Ag NWs networks morphology.

Fig. S2 The droplet length and contact angle variation of Ag NWs/ethanol ink as a function of solvent evaporation time.

Fig. S3 (a) Water contact angle on pure glass, corresponding to Ag NWs/water ink contact angle and the morphology of Ag NWs networks. (b-e) Different water contact angles on modified glasses, corresponding to Ag NWs/water ink contact angles and the morphology of Ag NWs networks, respectively. These indicated that the water contact angle was almost same with the Ag NWs/water ink contact angle on substate. Scale bar, $30 \mu m$.

Fig. S4 (a) diameter: ~20 nm, length: 20-60 μ m. (b) diameter: ~30 nm, length: 20-60 μ m. (c) diameter: ~50 nm, length: 20-60 μ m. (d) diameter: ~100 nm, length: 100-200 μ m. Scale bar, 30 μ m.

Fig. S5 (a) The photograph of transparent Ag NMs/glass heater. (b) The sheet resistance distribution of Ag NMs/glass heater (6 cm × 6 cm), corresponding to the area mapping (c). (d) Heating stability and repeatability of the Ag NMs/glass heater at 14V.

Fig. S6 Transmittance spectra of Ag NMs/glass electrode with different sheet resistances.

Fig. S7 (a) The photograph of transparent random Ag NWs/glass heater. (b) The sheet resistance distribution of random Ag NWs/glass heater (6 cm × 6 cm), corresponding to the area mapping (c). (d) Heating stability and repeatability of the random Ag NWs/glass heater at 14V.

Supplementary Movies

Movie S1. Dynamic evolution process of Ag NWs/ethanol ink on pure glass surface. The initial Ag NWs/ethanol CA was ~6.1°.

Movie S2. Dynamic evolution process of Ag NWs/ethanol ink on modified glass surface. The initial Ag NWs/ethanol CA was ~19.6°.

Movie S3. Dynamic evolution process of Ag NWs/ethanol ink on modified glass surface. The initial Ag NWs/ethanol CA was ~34.2°.

Movie S4. Dynamic evolution process of Ag NWs/ethanol ink on modified glass surface. The initial Ag NWs/ethanol CA was ~53.8°.

Movie S5. Dynamic evolution process of r Ag NWs/ethanol ink on modified glass surface. The initial Ag NWs/ethanol CA was ~57.2°.

Movie S6. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~52.8°.

Movie S7. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~56.7°.

Movie S8. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~60.5°.

Movie S9. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~139.8°.

Movie S10. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~147.2°.

Movie S11. Dynamic evolution process of Ag NWs/water ink on modified glass surface. The initial Ag NWs/water CA was ~157.5°.

Movie S12. The thermo-chromic processes of chameleon pattern on Ag NMs/PET heater surface upon different temperature.

Movie S13. The color change process of chameleon pattern on Ag NMs/PET heater surface upon different temperature under mechanical bending.

Movie S14. The thermo-chromic processes of QR code on Ag NMs/glass heater surface upon different temperature.