Supporting Information

Using ternary steric hindrance synergism of defective MoS₂ monolayer to

manipulate electrocatalytic mechanism toward nitric oxide reduction: A

first-principles and machine learning study

Lei Yang, Jiake Fan, Weihua Zhu*

Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^{*} Corresponding author. E-mail: zhuwh@njust.edu.cn

Figure S1. The Gibbs free energy changes of NORR on Fe@MoS2 with the different spins of Fe

Reaction pathway

Figure S2. The corresponding energies (Ha) of different species adsorbed on $Fe@MoS_2$ after geometry optimization with initial spins set from 0 to 4.

-		
ТМ	E_{f}	$U_{ m diss}$
Sc	-5.13	-0.37
Ti	-5.38	1.06
V	-4.44	1.04
Cr	-3.41	0.79
Mn	-2.92	0.27
Fe	-3.23	1.17
Со	-3.37	1.40
Ni	-2.91	1.20
Cu	-1.48	1.08
Zn	-1.83	0.16
Y	-4.76	-0.78
Zr	-5.55	-0.06
Nb	-4.99	0.56
Mo	-4.13	1.18
Ru	-3.38	2.15
Rh	-3.43	2.31
Pd	-2.56	2.23
Ag	-0.94	1.74
Cd	-1.58	0.39
Hf	-5.47	-0.18
Та	-4.92	1.04
W	-3.90	1.40
Re	-3.28	1.39
Os	-2.84	1.19
Ir	-3.09	2.19
Pt	-2.75	2.56
Au	-1.10	1.87

Table S1. The calculated $E_{\rm f}$ and $U_{\rm diss}$ of TM@MoS₂. (eV)

		0, 0	\bigcirc $=$ (,		
TM	ΔG_{*NO}	$\Delta G_{*\mathrm{NOH}}$	$\Delta G_{\rm N}$	$\Delta G_{\rm *NH}$	$\Delta G_{ m *NH2}$	$\Delta G_{ m *NH3}$
Sc						
Ti	-3.11	-3.07	-5.62	-5.43	-5.06	-4.27
V	-2.93	-3.29	-5.60	-5.47	-4.90	-3.91
Cr	-2.50	-3.30	-5.42	-5.53	-4.58	-3.80
Mn	-2.13	-2.87	-4.98	-5.08	-4.14	-3.62
Fe	-2.35	-2.98	-5.22	-5.23	-4.72	-4.20
Co	-2.26	-2.59	-5.12	-4.96	-4.81	-4.23
Ni	-2.28	-2.51	-5.02	-4.82	-4.90	-4.16
Cu	-2.38	-2.67	-4.94	-4.95	-4.95	-4.25
Zn	-2.16	-2.45	-4.71	-4.71	-4.88	-4.29
Y						
Zr						
Nb	-2.77	-3.19	-5.28	-5.39	-4.88	-3.84
Mo	-2.34	-3.18	-4.89	-5.45	-4.27	-3.55
Ru	-2.26	-2.83	-4.65	-5.05	-4.34	-3.91
Rh	-2.15	-2.40	-4.58	-4.65	-4.64	-4.02
Pd	-2.16	-2.32	-4.52	-4.51	-4.74	-4.02
Ag	-2.25	-2.44	-4.20	-4.53	-4.92	-4.28
Cd	-2.27	-2.32	-3.91	-4.24	-5.06	-4.36
Hf						
Та	-2.76	-3.20	-5.40	-5.43	-4.84	-3.82
W	-2.29	-3.19	-4.91	-5.48	-4.19	-3.47
Re	-2.44	-3.08	-4.74	-5.37	-4.15	-3.67
Os	-2.28	-2.88	-4.61	-5.11	-3.87	-3.88
Ir	-2.01	-2.35	-4.54	-4.60	-4.45	-3.92
Pt	-2.02	-2.11	-4.52	-4.32	-4.63	-4.01
Au	-2.21	-2.30	-3.80	-4.32	-5.02	-4.43

Table S2. The Gibbs free energy changes of TM@MoS₂. (eV)

ТМ	$E_{*\rm NH2}$	$E_{*\rm NH3}$	$E_{\rm *H}$
Sc			
Ti	-4.15	-0.96	-1.09
V	-3.99	-0.59	-1.00
Cr	-3.63	-0.45	-0.81
Mn	-3.28	-0.31	-0.50
Fe	-3.87	-0.90	-0.89
Co	-3.97	-0.88	-0.89
Ni	-4.04	-0.88	-0.90
Cu	-4.14	-0.97	-0.93
Zn	-4.06	-1.01	-0.84
Y			
Zr			
Nb	-3.98	-0.53	-0.99
Mo	-3.29	-0.22	-0.57
Ru	-3.50	-0.57	-0.70
Rh	-3.81	-0.72	-0.81
Pd	-3.90	-0.75	-0.86
Ag	-4.06	-1.01	-0.83
Cd	-4.21	-1.07	-0.93
Hf			
Ta	-3.90	-0.50	-0.98
W	-3.21	-0.14	-0.51
Re	-3.17	-0.35	-0.51
Os	-2.87	-0.51	-0.58
Ir	-3.66	-0.63	-0.72
Pt	-3.79	-0.68	-0.79
Au	-4.15	-1.16	-0.85

Table S3. The adsorption energies of *NH₂, *NH₃ and *H on TM@MoS₂. (eV)

ТМ	Ω
Sc	
Ti	4.28
V	4.40
Cr	4.00
Mn	3.47
Fe	3.87
Co	3.98
Ni	4.05
Cu	4.10
Zn	3.89
Y	
Zr	
Nb	4.45
Mo	3.64
Ru	3.63
Rh	3.90
Pd	4.01
Ag	3.88
Cd	4.06
Hf	
Та	4.38
W	3.58
Re	3.33
Os	2.94
Ir	3.75
Pt	3.90
Au	3.84

Table S4. The calculated novel descriptor Ω .

			\cup	- ()		
ТМ	*NO	*NOH	*N	*NH	*NH ₂	*NH ₃
	$\Delta ZPE/T\Delta S$					
Sc						
Ti	1.92/2.26	2.17/2.29	1.81/2.23	2.09/2.24	2.41/2.25	2.73/2.33
V	1.92/2.25	2.18/2.34	1.82/2.23	2.11/2.24	2.41/2.25	2.73/2.35
Cr	1.87/2.31	2.19/2.27	1.81/2.23	2.13/2.22	2.39/2.28	2.72/2.38
Mn	1.87/2.32	2.19/2.31	1.80/2.25	2.12/2.24	2.43/2.28	2.71/2.36
Fe	1.87/2.35	2.18/2.33	1.78/2.23	2.11/2.25	2.44/2.26	2.72/2.36
Co	1.90/2.32	2.16/2.37	1.78/2.22	2.09/2.28	2.44/2.26	2.71/2.40
Ni	1.89/2.34	2.19/2.34	1.79/2.25	2.08/2.28	2.43/2.27	2.70/2.32
Cu	1.87/2.37	2.17/2.37	1.74/2.34	2.06/2.31	2.40/2.32	2.68/2.42
Zn	1.84/2.44	2.14/2.44	1.74/2.37	2.04/2.36	2.38/2.37	2.67/2.47
Y						
Zr						
Nb	1.93/2.26	2.18/2.35	1.82/2.22	2.12/2.23	2.41/2.25	2.74/2.35
Mo	1.88/2.30	2.20/2.27	1.81/2.24	2.14/2.21	2.38/2.29	2.73/2.35
Ru	1.88/2.33	2.19/2.32	1.78/2.31	2.12/2.25	2.44/2.28	2.72/2.41
Rh	1.89/2.34	2.17/2.37	1.79/2.27	2.09/2.29	2.44/2.27	2.71/2.36
Pd	1.88/2.36	2.17/2.38	1.78/2.30	2.07/2.30	2.43/2.29	2.70/2.35
Ag	1.84/2.46	2.14/2.46	1.73/2.39	2.04/2.40	2.37/2.39	2.67/2.47
Cd	1.85/2.43	2.14/2.45	1.73/2.39	2.05/2.37	2.39/2.37	2.67/2.45
Hf						
Ta	1.92/2.27	2.18/2.36	1.82/2.25	2.12/2.26	2.38/2.29	2.72/2.37
W	1.87/2.33	2.19/2.29	1.81/2.26	2.13/2.24	2.38/2.30	2.72/2.36
Re	1.88/2.32	2.18/2.31	1.80/2.27	2.12/2.26	2.39/2.32	2.73/2.36
Os	1.88/2.34	2.19/2.34	1.79/2.31	2.12/2.27	2.38/2.34	2.72/2.40
Ir	1.89/2.36	2.17/2.40	1.80/2.26	2.10/2.32	2.45/2.28	2.72/2.42
Pt	1.89/2.36	2.17/2.40	1.79/2.29	2.09/2.31	2.44/2.30	2.71/2.43
Au	1.84/2.46	2.13/2.45	1.73/2.43	2.06/2.37	2.37/2.39	2.68/2.47

Table S5. The calculated $\triangle ZPE$ and $T\triangle S$ values of TM@MoS₂. (eV)