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1. Experimental Section

1.1. Preparation of the Precursor

The 40 g KOH and 20 g 4-nitrophenylthiourea were dissolved into 360 g water and mixed 

well. A cleaned lab coat was then added. After the lab coat absorbs water and infiltrates, the 

mixture was frozen at −10°C for 120 min. The lab coat in the mixture was completely 

dissolved, and the mixture was then broken into pieces after being frozen. The frozen blocks 

were then dried for 24 h in a lyophilizer, and the resulting product is the precursor.

1.2. Preparation of Porous Carbon

The precursor was placed in a high-temperature pipe furnace. A N2 atmosphere was used as a 

protective gas. The heating rate was first increased by 5°C/min to 400°C, and then held for 

120 min. It was then heated at 15°C/min to target temperatures T of 900, 1000, and 1100°C 

and held for 30 min. Finally, the sample was cooled naturally to room temperature. After 

annealing, the sample was removed and put in 1 M HCl solution. The bubbles were quickly 

stirred for 60 min to react. Vacuum filtering or a centrifugal method were used to separate the 

solid fluid. The product was then washed multiple times with ultra-pure water. The final black 

powder-like carbon products were named based on the annealing temperature: NS-C-900, NS-

C-1000, and NS-C-1100.

1.3. Physical Characterization

The morphologies and structures were characterized by scanning electron microscopy (SEM, 

Zeiss Ultra 55) and transmission electron microscopy (TEM, FEI Tacnai G2 F20). The phases 

and compositions of the samples were characterized by X-ray diffraction (XRD, Bruker D8) 

with Cu Kα radiation, X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCA LAB 

250 Xi) with monochromatic Al Kα radiation, and Raman spectroscopy (HORIBA LabRAM 

HR Evolution). The chemical functional groups were analyzed by Fourier transformation 
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infrared spectrometer (FTIR, NEXUS 870). The surface features and pore distributions were 

analyzed via nitrogen adsorption-desorption measurements on a Quantachrome Autosorb 

analyzer at liquid nitrogen temperature.

1.4. In Situ XRD

The in situ XRD electrode was assembled in a cell mold with a beryllium window. The NS-C-

1100 electrode with an Al foil current collector was cut into a 1 × 1 cm2 square, and the 

counter electrode and separator were the same as the coin cells. The specific current was 25 

mA/g for the in situ XRD cell, and data were collected every 15 min.

1.5. In Situ Raman

In situ measurements were conducted through a coverslip window in an airtight chamber 

containing an assembled coin cell with a small hole to reveal the NS-C-1100. The potential of 

the cell was controlled using a single-channel Metrohm Autolab. A linear sweep rate of 0.5 

mV/s was used, and Raman scans were acquired over 30 s intervals using an L50x objective, 

a 532 nm laser, a ~1.5-μm spot size, and ~600 mW of laser power.

1.6. In Situ TEM

The in situ discharge/charge experiments were constructed through a two-probe configuration 

in a Cs-corrected TEM (FEI, Titan G2). NS-C-1100 sample was milled into a nano pillar 

using focused ion beam (FIB, FEI Corp., Helios G4 CX). The nano pillar was welded on Cu 

mesh for use as the working cathode. Scratched metal K on a tungsten (W) tip was placed 

inside a glove box and filled with Ar gas as the reference and counter electrode. The naturally 

formed K2O on the metal K served as a solid electrolyte. The nanobattery was inserted into a 

TEMSTM (scanning tunneling microscopy) holder (Pico Femto FE-F2) inside a glove box. 

The holder was then sealed in a home-made air-tight bag filled with dry Ar and transferred to 

the ETEM. The total time of exposure to the air was less than 2 s, which limited the extent of 

K2O formation on the surface of the K metal. The nano pillar was manipulated to approach 

the K2O layer, and then a potential was applied to the NS-C-1100 versus the K metal 

electrode to either charge or discharge the battery. Real-time visualization of the structural 
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and phase changes of the NS-C-1100 can be directly correlated to the electrochemical 

reactions based on the above configuration.

1.7. Preparation of Potassium Ion Half Cells and PIBs Pouch Cell

Electrochemical performance analyses of the potassium ion half cells used 2032-type coin 

cells. The powder electrodes (NS-C-900/1000/1100) were made of 80 wt.% active material, 

10 wt.% Super P, and 10 wt.% CMC-Na. The slurry was coated on Cu foil to prepare the 

anode. These electrodes were dried in a vacuum oven at 80°C for 24 h. The mass loadings of 

electrode materials were 0.5–1.2 mg cm−2. The assembly was performed in the glove box, 

potassium foil was used as the counter electrode, and a glass microfiber filter (Whatman, 

Grade GF/A) was used as the separator. The electrolyte was 0.8 M KPF6 EC/DEC (1:1 by 

volume ratio). The PIB pouch cell was assembled in an argon-filled glove box using NS-C-

1100 anode (prepared by mixing active material (80 wt.%), acetylene black (10 wt.%), and 

PVDF (10 wt.%) in NMP. This material was then uniformly spread onto copper foil. The 

mass loading of NS-C-1100 is 0.6–1.4 mg cm−2. A glass fiber separator, a PB cathode 

(prepared by mixing active material (80 wt.%), acetylene black (10 wt.%), and PVDF (10 

wt.%) in NMP were also used and uniformly spread onto aluminum foil; the mass loading of 

PB is 1.8–2.4 mg cm−2. The electrolyte was 0.8 M KPF6 in ethylene carbonate/dimethyl 

carbonate (1:1). Prior to use in the pouch cell, the NS-C-1100 anode was potassiated in a half 

PIB with K metal as the counter electrode. And the capacity was calculated based on the mass 

of anode.

1.8. Electrochemical Tests and Calculations

The galvanostatic charge-discharge process was measured using a Land battery test system. 

The voltage range was 0.01~3V. Cyclic voltammetry (CV) analysis was performed by 

employing the electrochemical workstations (CHI760E). Electrochemical impedance 

spectroscopy (EIS) analysis was conducted from 100 kHz to 0.1 Hz. A galvanostatic 

intermittent titration technique (GITT) was used to measure the apparent diffusion coefficient 

of K+ in electrodes with a pulse current at 0.05 A g−1 for 30 min between rest intervals for 2 h. 

The diffusivity coefficient was estimated according to Fick’s second law as follows:
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where, τ is the pulse duration, MB is molar mass of carbon, mB and S are the active mass and 

surface area for the tested electrode, VM is the molar volume, ΔES and ΔEτ can be obtained 

from the GITT profiles.

1.9. DFT Calculation

The Vienna ab initio simulation package (VASP) was used to perform all the density 

functional theory (DFT) calculations. Generalized gradient approximation (GGA) with the 

function of Perdew-Burke-Ernzerhof (PBE) was used to describe the electron interaction 

energy of exchange correlation.[1] The plane wave cutoff was set to 450 eV in all calculations. 

The electron energy was considered to be self-consistent when the energy change was smaller 

than 10−5 eV. The criterion for optimal convergence of geometric structure was energy change 

smaller than −0.01 eV. The Brillouin zones were sampled with 5 × 5 × 1 Monkhorst-Pack 

meshes. A vacuum layer of 20 Å was built to prevent interactions between the two repeated 

layers.

2. Machine Learning

2.1. Principles of Artificial Neural Network

An artificial neural network (ANN) is a nonlinear model inspired by a biological neural 

network. ANNs can classify and perform regression tasks according to the characteristics of 

external input data. ANNs have been used for various applications including to predict the 

dynamic viscosity of a new non-Newtonian hybrid nanofluid,[2] predict fuel cell 

electrocatalyst parameters,[3] predict aircraft thrust,[4] and predict meteorological drought.[5] 

ANN is supervised learning, which is composed of an input layer, a hidden layer, and an 

output layer. The hidden layer contains an indefinite number of neurons. The specific model 

algorithm steps are as follows:



6

6

(1) The training data is input to the input layer of the ANN, and the final output results are 

obtained after several hidden layers. This process is also called forward propagation.

(2) There will be errors between the output results of the forward propagation of the 

neural network and the target results. The loss function is constructed according to the target 

results and output results. MSE is generally selected as the loss function in regression 

problems, and Softmax is generally selected as the loss function in multi-classification 

problems. The loss function is propagated backward from the output layer to the input layer.

(3) During back propagation, the value of each parameter is adjusted according to the loss 

function. In this process, the gradient descent method is generally used to adjust the weight 

and bias to reduce the loss function so that the output result of forward propagation is 

constantly close to the target result.

(4) The training can be terminated after iterating the above three steps (training the data 

repeatedly) when certain constraint conditions are reached. The specific process is as follows.

The activation function in this article uses the Relu function:
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If there are n training samples, then the mean square error of the k-th training sample on the 

output layer can be expressed as:

(S3)
 2

1

1 ˆ
2

l
k k
i

i
k iE y y



 

where, l represents the number of neurons in the output layer;  and  are the predicted ˆ k
iy k

iy

value and the true value of the i-th output neuron of the k-th sample, respectively.

The training of the neural network means that the mean square error Ek is propagated back to 

each hidden layer-by-layer through the chain derivation rule. Next, based on the gradient 

descent principle, the weight coefficient and functional neuron threshold between neurons of 

each layer are iteratively updated according to the following formula with the minimum mean 

square error of prediction error as the goal.
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where μ refers to any weight value and threshold parameter.

Through multiple iterations, the output layer Ek gradually reduces the predicted value and 

gradually approximates the real value until the convergence conditions are met.

2.2. Model Build

Decision Tree Regressor, Gradient Boosting Regressor and other model algorithms have 

achieved good results in the field of battery material prediction. The algorithms in the model 

above are highly interpretable and can assist chemical personnel in analyzing relevant 

principles. However, in the case of complex structural parameters and vague mathematical 

descriptions, the performance of the algorithms suffer. Based on the above considerations, this 

paper uses the ANN model algorithm to predict potassium storage performance. The ANN 

model algorithm constructs a five-layer ANN network. The activation function uses Relu, the 

loss function uses MSE, and the optimizer uses Adam. L2 regularization is used to prevent the 

network from over-fitting. The programming language used in the ANN model algorithm is 

Python 3.7, the deep learning framework is Tensorflow 2.4.0, and the GPU is GTX 1080 Ti.

2.3. Performance Prediction of Potassium Battery Materials

First, the computer reads the structural parameters and performance database. There are 57 

structural parameters (capacity performance parameters) and 71 structural parameters (ICE 

performance parameters). Second, the input reads the data into the model algorithm for 

training. The training data set is then divided into a training set and a validation set according 

to the 9:1 ratio. The MAE of the validation set capacity and ICE are 14.577 and 1.983, 

respectively. The specific measured values and predicted values of the validation set are 

shown in Figure 4b,c. Analysis of the validation set predicted results, and the model algorithm 

constructed in this paper can perform better evaluation indicators and prediction results on the 

validation set. Finally, three groups of capacity and ICE potassium storage properties were 

successfully predicted after the performance database of capacity and ICE structural 

parameters were predicted and input into the model algorithm. The MAE values were 8.830 
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and 2.390, respectively. The potassium storage performance was more accurately predicted 

from the perspective of the structural parameters.

2.4. Bottleneck

There are relatively few reports on the influence of d002, La, Lc, SSA, and ID/IG on potassium 

storage performance. Although this paper has sorted out 128 capacity and ICE structural 

parameters performance parameters from 71 publications, the database may still have a 

problem due to small data volume. The ANN model algorithm constructed here can predict 

the potassium storage performance of this study and can provide direction and reference for 

future machine learning to predict the potassium storage performance. However, the 

applicability of this method in other potassium storage performance prediction still needs 

further study.
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Figure S1. Physical characterization of NS-C-1100: a) SEAD pattern, b) SEM image, and 

corresponding elemental maps.
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Figure S2. Physical characterization of NS-C-900: a, b) TEM images, c, d) SEM images, and 

e) corresponding elemental maps.
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Figure S3. Physical characterization of NS-C-1000: a, b) TEM images, c, d) SEM images, 

and e) corresponding elemental maps.
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Figure S4. Pore size distribution of NS-C-900, NS-C-1000, and NS-C-1100.
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Figure S5. High resolution XPS profiles of NS-C-900, a) C1s, b) N1s, c) S2p; NS-C-1000 d) 

C1s, e) N1s, f) S2p; and NS-C-1100 g) C1s, h) N1s, and i) S2p.
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Figure S6. The XPS survey spectrum of NS-C-900, NS-C-1000, and NS-C-1100.
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Figure S7. The first five CV curves of NS-C-900 at a scan rate of 0.2 mV/s.
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Figure S8. The first five CV curves of NS-C-1000 at a scan rate of 0.2 mV/s.
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Figure S9. Galvanostatic charge/discharge voltage profiles during the first five cycles at 1 

A/g for NS-C-900.
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Figure S10. Galvanostatic charge/discharge voltage profiles during the first five cycles at 1 

A/g for NS-C-1000.
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Figure S11. Galvanostatic charge/discharge voltage profiles at different current densities for 

NS-C-900.
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Figure S12. Galvanostatic charge/discharge voltage profiles at different current densities for 

NS-C-1000.
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Figure S13. Galvanostatic charge/discharge voltage profiles at different current densities for 

NS-C-1100.
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Figure S14. Galvanostatic charge/discharge voltage profiles during the first five cycles at 1 

A/g for NS-C-1100 (later cycled 7000 cycles).
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Figure S15. a) CV curves at different scan rates, b) log(i)–log(v) curve for calculating b, c) 

capacitance-controlled ratio in total capacity at different scan rates of NS-C-900, d) capacitive 

contribution ratio of NS-C-900 at a scan rate of 2.0 mV/s.
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Figure S16. a) CV curves at different scan rates, b) log(i)–log(v) curve for calculating b, c) 

capacitance-controlled ratio in total capacity at different scan rates of NS-C-1000, d) 

capacitive contribution ratio of NS-C-1000 at a scan rate of 2.0 mV/s.
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Figure S17. a) CV curves at different scan rates, b) log(i)–log(v) curve for calculating b, c) 

capacitance-controlled ratio in total capacity at different scan rates of NS-C-1100, d) 

capacitive contribution ratio of NS-C-1100 at a scan rate of 2.0 mV/s.
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Figure S18. Elemental mapping image of C, O, N, S, and K for the first discharge to 0.01 V.
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Figure S19. Top view and electron density differences of the single K adsorbed energy in the 

pristine, vacancy, vacancy-grN, vacancy-pdN, vacancy-plN, vacancy-S, vacancy-grNS, 

vacancy-pdNS, and vacancy-plNS. Yellow and blue areas represent increased and decreased 

electron density, respectively. The isosurfaces are the 0.015 electron bohr.[3] Brown, silver, 

yellow, and purple balls represent carbon, nitrogen, sulfur, and potassium atoms, respectively.
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Figure S20. Physical characterizations for PB. a) XRD pattern. b, c) SEM and d, e) TEM 

images and corresponding elemental mappings.



29

29

2.0

2.5

3.0

3.5

4.0

0 50 100 150 200 250 300

Capacity (mAh/g)

V
ol

ta
ge

 (V
 v

s.
 K

/K
+ )

 1st
 2nd
 3rd
 4th
 5th

0 50 100 150 200

200

400

600

1400

C
ap

ac
ity

 (m
A

h/
g)

Cycle number

 Charge
 Discharge

0
20
40
60
80
100

 Coulombic efficiency

C
ou

lo
m

bi
c 

ef
fic

ie
nc

y 
(%

)(a) (b)

21

Figure S21. Electrochemical properties of PB in half-cell. a) Galvanostatic charge/discharge 

voltage profiles in the first five cycle at 0.1 A/g for PB. b) Cycling performance of PB at a 

current density of 0.1 A/g.
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Table S1. Elemental contents based on XPS characterization.
C O N S

NS-C-900 93.61 3.58 1.04 1.77

NS-C-1000 88.37 3.75 1.41 6.47

NS-C-1100 86.36 3.39 1.25 8.99
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Table S2. Comparison of electrochemical performances as anode of PIBs between NS-C in this work 
and other carbon materials.

Title Journal Year 1000 
mA/g

Hollow N-doped carbon nanofibers provide superior potassium-storage 
performance Nanoscale Adv 2020 248.4

A Flexible Multi-Channel Hollow CNT/Carbon Nanofiber Composites with S/N 
Co-Doping for Sodium/Potassium Ion Energy Storage AMI 2021 200

Fast-Charging Nonaqueous Potassium-Ion Batteries Enabled by Rational 
Construction of Oxygen-Rich Porous Nanofiber Anodes AMI 2021 210

Enhanced sodium and potassium ions storage of soft carbon by a S/O co-doped 
strategy EA 2021 202

Understanding of the Ultrastable K-Ion Storage of Carbonaceous Anode AFM 2018 189

Understanding mesopore volume-enhanced extra-capacity: Optimizing 
mesoporous carbon for high-rate and long-life potassium-storage ESM 2020 211

Superior lithium/potassium storage capability of nitrogen-rich porous carbon 
nanosheets derived from petroleum coke JMCA 2018 244

A Large Scalable and Low-Cost Sulfur/Nitrogen Dual-Doped Hard Carbon as 
the Negative Electrode Material for High-Performance Potassium-Ion Batteries AEM 2019 212

Superior potassium-ion storage properties by engineering pseudocapacitive 
sulfur/nitrogen-containing species within three-dimensional flower-like hard 
carbon architectures

Carbon 2020 206

Facile and scalable synthesis of a sulfur, selenium and nitrogen co-doped hard 
carbon anode for high performance Na- and K-ion batteries JMCA 2020 187.9

Sulfur-Doped Flowerlike Porous Carbon Derived from Metal-Organic 
Frameworks as a High-Performance Potassium-Ion Battery Anode

ACS Applied Energy 
Materials 2021 226.9

Fast and stable potassium-ion storage achieved by in situ molecular self-
assembling N/O dual-doped carbon network ESM 2019 205

A Site-Selective Doping Strategy of Carbon Anodes with Remarkable K-Ion 
Storage Capacity Angew. Chem. Int. Ed. 2020 195

In Situ Revealing the Electroactivity of P-O and P-C Bonds in Hard Carbon for 
High-Capacity and Long-Life Li/K-Ion Batteries AEM 2019 224

N/O Dual-Doped Environment-Friendly Hard Carbon as Advanced Anode for 
Potassium-Ion Batteries Advanced Science 2020 254.4

Multi-forks hierarchical porous amorphous carbon with N-Doping for high-
performance potassium-ion batteries EA 2020 292.3

N/O double-doped biomass hard carbon material realizes fast and stable 
potassium ion storage Carbon 2021 240.9

Soybean roots-derived N, P co-doped mesoporous hard carbon for boosting 
sodium and potassium-ion batteries Carbon 2021 280

Manipulation of 2D carbon nanoplates with a core-shell structure for high-
performance potassium-ion batteries JMCA 2019 215

UIO-66-NH2-derived mesoporous carbon used as a high-performance anode for 
the potassium-ion battery RSC Advances 2021 246
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Carbon quantum dot micelles tailored hollow carbon anode for fast potassium 
and sodium storage Nano Energy 2019 206

High-performance potassium ion capacitors enabled by hierarchical porous, 
large interlayer spacing, active site rich-nitrogen, sulfur co-doped carbon Carbon 2020 234.6

Radial Pores in Nitrogen/Oxygen Dual-Doped Carbon Nanospheres Anode Boost 
High-Power and Ultrastable Potassium-Ion Batteries AFM 2021 193

A new strategy for achieving high K+ storage capacity with fast kinetics: 
realizing covalent sulfur-rich carbon by phosphorous doping Nanoscale 2021 299

Phosphorus and Oxygen Dual-Doped Porous Carbon Spheres with Enhanced 
Reaction Kinetics as Anode Materials for High-Performance Potassium-Ion 
Hybrid Capacitors

AFM 2021 258

Toward High-Performance Capacitive Potassium-Ion Storage: A Superior 
Anode Material from Silicon Carbide-Derived Carbon with a Well-Developed 
Pore Structure

AFM 2020 200

Nanocomposites of reduced graphene oxide modified with mesoporous carbon 
layers anchored by hollow carbon spheres for energy storage Carbon 2021 229.1

High potassium ion storage capacity with long cycling stability of sustainable 
oxygen-rich carbon nanosheets Nanoscale 2021 200

Hierarchically Structured Nitrogen-Doped Carbon Microspheres for Advanced 
Potassium Ion Batteries ACS Materials Letters 2020 180

This work 313.5



33

33

Table S3. Structural parameters of carbon in terms of capacity.
d002 (nm) La (nm) Lc (nm) ID/IG SSABET (m2 g−1) Capacity (mAh g−1) Reference

0.340 34.889 10.875 0.710 126.000 240.000 6

0.351 2.610 1.350 0.770 20.330 284.000 7

0.349 3.800 1.430 0.910 26.000 271.000 7

0.348 3.930 1.880 1.030 28.500 244.000 7

0.344 5.840 3.700 1.010 52.200 436.000 8

0.336 3.690 1.210 1.050 87.500 272.000 9

0.349 7.550 2.320 0.960 3.850 255.000 10

0.335 43.871 40.816 0.340 33.400 200.000 11

0.334 145.231 74.216 0.430 6.170 209.000 12

0.330 5.799 1.602 1.180 105.000 328.000 13

0.340 5.310 2.970 0.890 68.300 255.000 14

0.339 7.738 1.554 1.060 430.000 460.000 15

0.337 5.402 23.314 1.830 1551.800 212.500 16

0.356 10.010 1.521 1.090 977.700 245.000 17

0.370 9.220 1.710 1.014 1126.000 250.000 18

0.425 8.728 2.308 1.020 1857.000 364.000 19

0.391 3.130 1.020 0.890 1030.500 265.000 20

0.353 17.599 1.551 1.670 995.000 449.000 21

0.356 43.641 4.069 1.060 69.200 301.000 22

0.370 14.547 1.710 1.000 706.740 263.000 23

0.386 2.793 2.162 0.920 1303.000 124.000 24

0.363 4.534 2.032 0.770 269.800 336.000 25

0.369 4.020 0.910 1.160 674.000 280.000 26

0.356 5.819 2.325 0.880 247.000 310.900 27

0.371 3.490 1.060 0.970 1021.100 227.000 28

0.388 3.960 0.970 1.060 983.200 212.800 29

0.386 7.737 1.707 0.920 1950.000 296.000 30

0.379 3.980 0.940 0.950 778.750 230.900 31

0.388 3.110 0.950 0.950 848.300 289.000 32

0.353 3.370 0.770 0.810 110.730 219.000 33

0.375 4.080 0.900 0.890 357.680 263.000 33

0.358 3.730 1.490 0.990 109.830 276.000 34

0.359 4.080 1.250 0.940 31.000 260.000 35

0.337 8.010 8.670 0.230 48.730 303.000 36
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0.369 4.810 1.200 0.920 101.500 319.000 37

0.359 4.665 2.324 1.030 280.700 296.000 38

0.395 4.996 2.025 1.080 2264.000 305.000 39

0.386 3.491 1.707 1.050 630.000 310.000 40

0.356 6.983 3.617 1.010 228.560 250.000 41

0.358 2.950 1.140 0.880 104.000 195.500 42

0.349 3.150 2.160 1.120 54.000 125.000 43

0.351 3.900 1.930 1.000 48.000 93.000 43

0.375 17.456 1.624 1.090 87.900 297.000 44

0.368 4.140 0.940 0.940 171.000 279.000 45

0.379 4.110 1.030 0.920 531.670 247.800 46

0.366 2.820 1.170 1.130 306.400 269.000 47

0.370 17.456 2.166 0.950 68.780 265.000 48

0.356 6.983 1.713 1.020 163.300 212.700 49

0.361 3.480 1.070 1.010 316.200 253.900 50

0.361 5.810 1.550 1.080 9.500 162.000 51

0.368 4.010 0.930 0.980 168.000 144.400 52

0.378 7.745 1.803 1.120 228.000 252.000 53

0.346 3.410 1.260 1.050 99.000 238.000 54

0.372 11.654 1.476 0.894 458.000 151.800 55

0.368 3.280 1.040 0.990 75.800 186.000 56

0.387 4.200 0.940 0.990 1411.000 317.000 57

0.369 3.750 1.100 1.070 48.300 181.200 58

Table S4. Structural parameters of carbon for ICE.
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d002 (nm) La (nm) Lc (nm) ID/IG SSABET (m2 g−1) ICE (%) Reference

0.348 3.930 1.880 1.030 28.500 44.600 7

0.371 3.700 1.230 1.170 47.200 41.400 8

0.344 5.840 3.700 1.010 52.200 61.200 8

0.336 3.690 1.210 1.050 87.500 33.350 9

0.355 3.840 1.000 0.970 254.500 31.060 9

0.335 43.871 40.816 0.340 33.400 81.560 11

0.334 145.231 74.216 0.430 6.170 78.600 12

0.330 5.799 1.602 1.180 105.000 73.000 13

0.340 5.310 2.970 0.890 68.300 35.300 14

0.339 7.738 1.554 1.060 430.000 15.700 15

0.337 5.402 23.314 1.830 1551.800 50.100 16

0.425 8.728 2.308 1.020 1857.000 19.700 19

0.391 3.130 1.020 0.890 1030.500 25.000 20

0.353 17.599 1.551 1.670 995.000 23.800 21

0.356 43.641 4.069 1.060 69.200 19.000 22

0.371 3.490 1.060 0.970 1021.100 27.600 28

0.388 3.960 0.970 1.060 983.200 61.170 29

0.386 7.737 1.707 0.920 1950.000 32.000 30

0.379 3.980 0.940 0.950 778.750 24.400 31

0.353 3.370 0.770 0.810 110.730 19.800 33

0.358 3.730 1.490 0.990 109.830 35.300 34

0.359 4.080 1.250 0.940 31.000 24.100 35

0.369 4.810 1.200 0.920 101.500 47.000 37

0.359 4.665 2.324 1.030 280.700 20.000 38

0.395 4.996 2.025 1.080 2264.000 31.100 39

0.386 3.491 1.707 1.050 630.000 71.000 40

0.356 6.983 3.617 1.010 228.560 55.350 41

0.364 4.090 1.060 0.740 234.000 39.700 42

0.358 2.950 1.140 0.880 104.000 38.200 42

0.349 3.150 2.160 1.120 54.000 55.500 43

0.341 5.310 2.970 0.690 117.400 34.800 43

0.360 4.000 1.880 1.130 72.000 52.000 43

0.351 3.900 1.930 1.000 48.000 27.000 43

0.375 17.456 1.624 1.090 87.900 40.000 44
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0.368 4.140 0.940 0.940 171.000 72.100 45

0.379 4.110 1.030 0.920 531.670 42.600 46

0.366 2.820 1.170 1.130 306.400 42.800 47

0.370 17.456 2.166 0.950 68.780 37.920 48

0.356 6.983 1.713 1.020 163.300 33.000 49

0.361 3.480 1.070 1.010 316.200 30.280 50

0.361 5.810 1.550 1.080 9.500 54.000 51

0.375 4.440 1.250 1.020 15.100 57.000 51

0.384 3.260 1.010 0.990 41.600 50.000 51

0.377 3.950 1.190 1.010 18.300 58.000 51

0.346 3.410 1.260 1.050 99.000 49.000 54

0.372 11.654 1.476 0.894 458.000 30.000 55

0.368 3.280 1.040 0.990 75.800 45.800 56

0.369 3.750 1.100 1.070 48.300 47.100 58

0.387 3.110 1.200 1.030 24.500 46.800 58

0.348 4.390 1.330 1.110 270.000 31.700 59

0.356 6.959 1.627 0.980 820.000 59.500 60

0.409 3.130 1.140 1.090 1089.000 63.600 61

0.347 3.480 0.930 0.910 416.350 48.400 62

0.376 3.780 1.100 0.950 99.600 49.100 63

0.378 3.230 0.970 0.790 176.900 55.100 63

0.351 2.610 1.350 0.770 20.330 43.200 64

0.381 4.280 0.870 0.990 519.000 29.400 64

0.386 5.819 1.544 0.820 377.600 41.800 65

0.419 2.590 0.650 0.740 88.450 50.700 66

0.411 2.850 0.980 0.870 356.980 40.800 66

0.378 3.930 0.750 1.040 668.800 24.600 67

0.378 4.510 1.020 0.860 5.000 31.500 68

0.380 2.660 0.990 0.910 3.400 58.300 69

0.395 11.658 1.473 1.090 398.850 50.400 70

0.384 4.850 1.150 1.260 336.400 50.690 71

0.403 3.620 1.220 1.160 65.000 61.800 72

0.383 4.190 1.070 1.010 354.700 73.000 73

0.378 4.150 1.060 1.070 132.000 72.000 73

0.398 3.950 1.140 0.900 19.100 45.700 74
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0.349 3.700 1.260 1.000 534.200 37.700 75

0.342 15.869 2.174 1.080 757.800 44.200 76
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Table S5. Prediction of capacity structural parameters.
d002 

(nm) La (nm) Lc (nm) ID/IG SSABET (m2 g−1)
Measured Capacity (mAh 

g−1)
Predicted Capacity 

(mAh g−1)
MAE

0.340 5.202 3.942 0.676 371.535 240.000 255.199

0.350 4.393 1.298 0.958 331.577 362.000 356.652

0.400 4.813 0.774 1.067 224.995 602.000 607.944

8.830
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Table S6. Prediction of ICE structural parameters.
d002 (nm) La (nm) Lc (nm) ID/IG SSABET (m2 g−1)

Measured ICE 
(%)

Predicted ICE 
(%) MAE

0.340 5.202 3.942 0.676 371.535 57.000 53.486

0.350 4.393 1.298 0.958 331.577 27.250 30.315

0.400 4.813 0.774 1.067 224.995 57.990 57.398

2.390
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