Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

for

Synthesis and characterization of sodium hafnium oxide (Na₂HfO₃) and its high temperature CO₂ sorption properties

Ribooga Chang^a, Erik Svensson Grape^b, Teva Clairefond^a, Evgenii Tikhomirov^a, A. Ken Inge^b and

Ocean Cheunga*

^a Division of Nanotechnology and Functional Materials, Department of Materials Science and

Engineering, Uppsala University, Ångström Laboratory, Uppsala SE-751 03, Box 35, Sweden

^b Department of Materials and Environmental Chemistry, Stockholm University, SE-10691, Sweden

*Corresponding author. Tel.: +46 18 471 3279, Email:ocean.cheung@angstrom.uu.se

Table of contents

Section 1. Synthesis of Sodium hafnium oxide (Na2HfO3)1
Section 2. The effect of different carbonation temperatures5
Section 3. The effect of molar ratios between Na ₂ CO ₃ and HfO ₂ <u>6</u>
Section 4. The effect of synthesis time/heating rate11
Section 5. cyclic stability12
Section 6. Kinetic analysis on NHO-Xs17
Section 7. 3D printing

Figure S1. The synthesized NHO-1.25 by the different synthesis temperatures at 800, 850, and 1050 °C.

Figure S2. The synthesized Li_2HfO_3 under 100% N_2 , 10 °C/min of the heating rate, at 900 °C for 3 h, and performed the carbonation at 750 °C.

Figure S3. The synthesized K_2 HfO₃ under 100% N₂, 10 °C/min of the heating rate, at 900 °C for 3 h, and performed the carbonation at 750 °C.

Table S1. The Calculated weight loss related to CO_2 elimination during the synthesis of NHO-Xs, assuming that the stoichiometry of the reaction mixture was as expected.

Na ₂ CO ₃ :HfO ₂ ratio	Expected weight loss related to CO ₂ elimination (%)
0.5:1	8.35
0.75:1	11.38
1:1	13.90
1.25:1	12.83
1.5:1	11.90

Figure S4. The Calculated weight loss related to CO_2 elimination during the synthesis of NHO-Xs, assuming that the stoichiometry of the reaction mixture was as expected (left arrow) and the recorded weight loss at the end of the 3h synthesis (right arrow). The differences are likely to be related to the over 100% theoretical maximum CO_2 uptake observed on some samples

Figure S5. PXRD patterns of the starting materials of NHO-Xs (a) HfO₂ and (b) Na₂CO₃.

Table S2. Brunauer-Emmett-Teller (BET) specific surface area, Langmuir surface area, and averageparticle size of NHO-Xs.

NHOx	0.5	0.75	1	1.25	1.5
BET surface area[m ² /g]	3.83	3.76	3.51	3.66	2.83
Langmuir surface area [m ² /g]	5.56	6.32	5.53	8.88	5.59

Figure S6. Simulated PXRD patterns of the three space groups (a) C2/m, (b) $P3_212$, and (c) $P3_112$, respectively.

Section 2. The effect of different carbonation temperatures

Figure S7. The CO_2 uptake capacity of different carbonation temperature (a and b) NHO-0.5 (c and d) NHO-0.75 (e and f) NHO-1 (f and h) NHO-1.25 (i and j) NHO-1.5.

Figure S8. XPS spectra of the synthesized NHO-Xs (a) NHO-0.5 (b) NHO-0.75 (c) NHO-1 (d) NHO-1.25 (e) NOH-1.5.

Section 4. The effect of synthesis time/heating rate

Sorbent	Synthesis time [hr]	Theoretical max CO ₂ uptake [wt.%]	Recorded CO ₂ uptake [wt.%]	Recorded uptake vs theoretical uptake [%]	Reference
NHO-0.5	1	9.1	11.91	130.88	This work
NHO-0.5	2	9.1	7.79	85.60	This work
NHO-0.5	3	9.1	7.02	77.14	This work
NHO-0.5	4	9.1	6.53	71.76	This work
NHO-0.75	1	12.8	9.21	71.95	This work
NHO-0.75	2	12.8	11.02	86.09	This work
NHO-0.75	3	12.8	12.45	97.27	This work
NHO-0.75	4	12.8	11.56	90.31	This work
NHO-1	1	16.1	13.97	86.77	This work
NHO-1	2	16.1	15.1	93.79	This work
NHO-1	3	16.1	14.87	92.36	This work
NHO-1	4	16.1	14.64	90.93	This work
NHO-1.25	1	14.7	13.33	90.68	This work
NHO-1.25	2	14.7	13.09	89.05	This work
NHO-1.25	3	14.7	15.18	103.27	This work
NHO-1.25	4	14.7	11.05	75.17	This work
NHO-1.5	1	13.5	6	44.44	This work
NHO-1.5	2	13.5	9.95	73.70	This work
NHO-1.5	3	13.5	8.04	59.56	This work
NHO-1.5	4	13.5	9.45	70.00	This work
Sorbent	Heating rate [°C/min]	Theoretical max CO ₂ uptake [wt.%]	Recorded CO2uptake [wt.%]	Recorded uptake vs theoretical uptake [%]	Reference
NHO-1	2	16.1	15.03	93.35	This work
NHO-1	5	16.1	15.09	93.73	This work
NHO-1	10	16.1	15.1	93.79	This work
NHO-1.25	2	14.7	13.09	89.05	This work
NHO-1.25	5	14.7	15.17	103.20	This work
NHO-1.25	10	14.7	15.17	103.20	This work

Table S3. The CO_2 uptake capacity of the synthesized NHO-Xs by different synthesis times and heating rates.

Figure S9. The CO₂ uptake capacity of the synthesized (a) NHO-1.25 and (b) NHO-1 with different heating rates of 2, 5, 10 $^{\circ}$ C/min.

Section 5. cyclic stability

Figure S10. The cycle stability of NHO-1 under optimized conditions: synthesis at 900 °C for 2hrs; carbonation and calcination at 650 and 900 °C for 20 and 20 min with 10 °C/min of heating.

Figure S11. The cycle stability of NHO-1.25 under optimized conditions: synthesis at 900 °C for 3hrs; carbonation and calcination at 750 and 900 °C for 20 and 20 min with 10 °C/min of heating.

Figure S12. The cycle stability of NHO-1.25 under optimized conditions: synthesis at 900 °C for 3hrs; carbonation and calcination at 800 and 900 °C for 20 and 20 min with 10 °C/min of heating.

Figure S13. PXRD patterns after the cyclic stability test of (a) NHO1.25 at 750, (b) NHO1.25 at 800, and (c) NHO1 at 650 °C.

Figure S14. SEM images of the sorbent synthesized with 1.25:1 ratio under optimized conditions: synthesis at 900 °C for 3hrs; carbonation and calcination at 800 and 900 °C for 20 and 20 min with 10 °C/min of heating (a and b) 5 cycles (c and d) 100 cycles (e and f) After carbonation.

Figure S15. The CO_2 uptake capacity and stability of NHO-1.25 under the mixed gas conditions for carbonation and calcination at 600 and 1000 °C for 30 and 60 min.

Section 6. Kinetic analysis on NHO-Xs

Figure S16. The CO_2 uptake kinetics of the synthesized NHO-Xs using five different kinetic models; the pseudo first order (PFO) model, pseudo second order (PSO) model, the Elovich model, the Avrami model and the Avrami-Erofeev for (a) NHO-0.5, (b) NHO-0.75, (c) NHO-1, (d) NHO-1.25, (e) NHO-1.5.

Table S4. The correlation coefficient (R^2) and Root-MSE of five different kinetic models; the pseudo first order (PFO) model, pseudo second order (PSO) model, the Elovich model, the Avrami model and the Avrami-Erofeev for the synthesized NHO-Xs from 1st and 5th cycles.

Conhanta	\mathbf{R}^2 from linear type					
Sorbents	PFO	PSO	Avrami	Avrami_E	Elovich	
NHO-0.5	0.97343	0.99955	0.9935	0.9895	0.89058	
NHO-0.75	0.97221	0.99747	0.98286	0.99432	0.88592	
NHO-1	0.97576	0.99986	0.98368	0.99435	0.91073	
NHO-1.25	0.96736	0.99982	0.95689	0.98219	0.87867	
NHO-1.5	0.94535	0.99972	0.99062	0.97814	0.96	
NHO-0.5 at 5 th cycles	0.9807	0.9998	0.96446	0.98702	0.8943	
NHO-0.75 at 5 th cycles	0.98	1	0.68203	0.98757	0.84969	
NHO-1 at 5 th cycles	0.9807	1	0.98182	0.9901	0.84969	
NHO-1.25 at 5 th cycles	0.9807	1	0.96446	0.98681	0.84969	
Sorbonts	Root-MSE from Non-linear type					
Sorbents	PFO	PSC) А	vrami	Elovich	
NHO-0.5	1.54628	3.887	21 1.	54628	13.16562	
NHO-0.75	1.63853	8.525	59 1.	63853	11.10093	
NHO-1	1.42262	1.751	78 1.	42262	4.95774	
NHO-1.25	2.4	2.861	96	2.4	8.43823	
NHO-1.5	0.22512	0.035	43 0.	22512	1.24756	
NHO-0.5 at 5 th cycles	3.19	1.584	87	3.19	7.82237	
NHO-0.75 at 5 th cycles	1.20689	1.983	55 1.	20689	6.95818	
NHO-1 at 5 th cycles	3.14634	1.888	03 3.	14634	8.21768	
NHO-1.25 at 5 th cycles	1.41966	1.138	66 1.	41966	4.50027	
NHO-1.5 at 5 th cycles	3.05931	0.438	35 3.	05931	2.9943	

Section 7. 3D printing

Printing parameter	Value
Layer height, mm	0.15
Wall line count	1
Infill type	Zig Zag
Infill density, %	20
Printing speed, mm/s	3 mm/s
Printing surface temperature, °C	60

Table S5. The conditions of the 3D-printer for the printed structure of NHO-1

The 3D model was created in Fusion 360 (Autodesk, San Francisco, USA) and transferred to Ultimaker Cura 5.1.0 (Ultimaker B.V, Utrecht, Netherlands) for the following printing protocol generation. Then, the printing parameters (Table S5) were set and the final G-code file was created. After that, the loaded syringe with a tip was loaded into the tool head and the model was built on the glass cover sleep covered with an alumina foil for better material adhesion. The pre-heated printing surface prevent the extruded material from uncontrolled spreading what consequently increase the overall resolution.

Figure S17. PXRD patterns of the 3D-printed NHO-1 (a) before synthesis (b) after synthesis.

Figure S18. SEM images of the 3D-printed NHO-1 (a and b) before synthesis (c and d) after synthesis.

Figure S19. The CO₂ uptake capacity of the 3D-printed NHO-1.

Table S6. Brunauer-Emmett-Teller (BET) specific surface area, Langmuir surface area, and averageparticle size of the 3D printed NHO-1.

NHOx	NHO-1	3D printed NHI-1
BET surface area[m ² /g]	3.50	5.06
Langmuir surface area [m ² /g]	5.53	8.64