Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

for

Biaxially Oriented Films of Grafted-Polypropylene with Giant Energy Density and High Efficiency at 125 °C

Junluo Li¹, Shaojie Wang¹, Yujie Zhu¹, Zhen Luo¹, Ya-Ru Zhang², Qing Shao², Hui Quan², Mingti Wang², Shixun Hu¹, Mingcong Yang¹, Jing Fu¹, Rui Wang¹, Jun Hu¹, Hao Yuan^{2,*}, Jinliang He^{1,*}, Qi Li^{1,*}

¹ State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China.
E-mail: qili1020@tsinghua.edu.cn
E-mail: hejl@tsinghua.edu.cn

² SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013,
People's Republic of China, Beijing 100013, China
E-mail: yuanhao.bjhy@sinopec.com

Sample	Melting temperature (°C)		Melting enthalpy (J/g)		Crystallinity (%)	
	Heating 1	Heating 2	Heating 1	Heating 2	Heating 1	Heating 2
ВОРР	168.99	163.84	104.2	91.47	49.86%	43.77%
BO-(PP-g-M	169.94	163.1	100.5	88.01	48.09%	42.11%
MA)-2.5%						
BO-(PP-g-M	169.74	164.06	102.8	90.29	49.19%	43.20%
MA)-5%						
BO-(PP-g-M	170.27	163.5	98.22	84.28	47.00%	40.33%
MA)-7.5%						
BO-(PP-g-M	169.07	164.3	96.52	84.28	46.18%	40.33%
MA)-10%						

Table S1 Thermal Properties for BO-(PP-g-MMA) and BOPP.

Figure S1 Area percentage of Electrostatic potential of PP and PP-g-MMA

Figure S2 SSNMR spectra of BO-(PP-g-MMA)-5% and BOPP

Figure S3 DSC thermograms for BO-(PP-g-MMA) and BOPP. (a) Heating 1 and (b) Heating 2.

Figure S4 1D integrated WAXD curves of (a) PP-g-MMA-5% and (b) PP.

Figure S5 Cross-sectional SEM images of PP and PP-g-MMA. (a) PP, (b) PP-g-MMA-2.5%, (c) PP-g-MMA-5%, (d) PP-g-MMA-7.5% and (e) PP-g-MMA-10%.

Figure S6 Cross-sectional SEM images of PP and PP-g-MMA after etched by xylene. (a) PP, (b) PP-g-MMA-2.5%, (c) PP-g-MMA-5%, (d) PP-g-MMA-7.5% and (e) PP-g-MMA-10%.

Figure S7 Cross-sectional SEM images of (a) BOPP and (b) Etched BOPP by xylene.

Figure S8 NanoIR spectroscopy spectrum on matrix and spherical dispersion phase for BO-(PP-g-MMA)-5%.

Figure S9 Room-temperature energy storage performance of BO-(PP-g-MMA) and BOPP. (a) Frequency dependent dielectric constant and dissipation factor at 30 °C. (b) Weibull distribution of the breakdown strength at 30 °C. (c) Charge-discharge efficiency and discharged energy density at 30 °C. (d) Leakage current density at $30 \degree$ C.

Figure S10 Temperature dependence of the dielectric constant and dissipation factor

of BOPP and grafted BOPP

Figure S11 Field-dependent energy density and discharge efficiency of BOPP, PP/PMMA and BO-(PP-g-MMA)-5% at 125 °C.

Figure S12 Storage modulus and loss modulus of BOPP and grafted BOPP

Figure S13 Strain-stress curve of BOPP and BO-(PP-g-MMA)-5%

Figure S14 High-temperature leakage current density of BO-(PP-g-MMA) and BOPP.

Figure S15 Thermally stimulated current spectra of BO-(PP-g-MMA)-5%, BO-(PP-g-MMA)-7.5% and BOPP under the polarization electric field of 50MV/m.