1 Electronic Supplementary Information (ESI)

2 A micro/nano multiscale hierarchical structure strategy to fabricate

3 highly conducting films for electromagnetic interference shielding and

4 energy storage

- 5 Beibei Wang^{1,4}, Weiye Zhang^{1,4}, Jingmeng Sun^{1,4}, Chenhuan Lai², Shengbo Ge²,
- 6 Hongwu Guo^{1,4*}, Yi Liu^{1,4*}, Daihui Zhang^{2,3*}
- ⁷ ¹Key Laboratory of Wood Material Science and Application (Beijing Forestry
 ⁸ University), Ministry of Education, Beijing 100083, China
- 9 ²Co-Innovation Center of Efficient Processing and Utilization of Forest Resources,
- 10 Nanjing Forestry University, Nanjing 210037, Jiangsu, China
- 11 ³Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry,
- 12 Nanjing, Jiangsu 210042, China
- 13 ⁴Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of
- 14 Education, Beijing Forestry University, Beijing 100083, China
- 15 *Corresponding author. E-mail: guohongwu_305@bjfu.edu.cn,
- 16 liuyichina@bjfu.edu.cn, Daihui.zhang@mail.mcgill.ca

18 Figures

- Fig. S 1 a Digital photograph of the TOCNFs suspension. b TEM image of the TOCNFs
- 20
- suspension. c AFM image of the TOCNFs suspension. d-e Side view and top view of 21
- the pure TOCNFs film 22

Fig. S 2 Schematic illustration of the preparation of $Ti_3C_2T_x$ nanosheets

Fig. S 3 a Digital photograph. b SEM image of the MAX powder

Fig. S 4 a Digital photograph of the $Ti_3C_2T_x$ suspension. **b** AFM image of the $Ti_3C_2T_x$ suspension. **c** AFM image of the $Ti_3C_2T_x$ nanosheets. **d** Height profiles of the different lines marked on **c**. **e** HR-TEM image of the $Ti_3C_2T_x$ suspension. **f** SAED patterns, and **g** lattice fringes

Fig. S 5 a side view and **b** top view of the pure $Ti_3C_2T_x$ film

37 Fig. S 7 a XPS wide-scan spectra, b Ti 2p spectra, and c Al 2p spectra of the Ti₃AlC₂

38 precursor and the $Ti_3C_2T_x$ nanosheets

Fig. S 8 a Ti 2p, **b** O 1s, and **c** C 1s spectra of $Ti_3C_2T_x$

41

42 Fig. S 9 a Digital photograph of the AgNW suspension. b TEM image of AgNW

43 suspension, and c SEM image of the pure AgNW film

Fig. S 10 FT-IR spectra of FM4, FM3Ag, FMAg3, and FAg4 hybrid films
The FM4 had a vibrational mode at 3482 cm⁻¹ assigned for -OH group out-ofplane vibration, 1038 cm⁻¹ for C-F bonds, and 573 cm⁻¹ for Ti-O bonds. For FAg4,
obvious absorption peaks are observed at 1079 cm⁻¹, and 1746 cm⁻¹ for -C-O bonds
and almost had indistinct -OH vibrational peaks.

Fig. S 11 XRD patterns of FM4, FM3Ag, FMAg3, and FAg4 hybrid films

53 Fig. S 12 XPS survey scan spectra of FM4, FM3Ag, FMAg3, and FAg4 hybrid films

d O 1s region of the TOCNFs/Ti₃C₂T_x/AgNW hybrid films

Fig. S 14 C 1s spectra of a FM4, b FM3Ag, c FMAg3, and d FAg4

60

Fig. S 15 Digital photo of micromechanical test

61

62 Fig. S 16 Folding times of the TOCNFs/Ti₃C₂T_x/AgNW hybrid films under loading of

63 4.9 N

- 65 Fig. S 17 Digital photos of a FM2Ag2-Mix hybrid film, b FM2Ag2 hybrid film, and c
- 66 FM2Ag2 hybrid film loaded with a weight of 500 grams without breaking or cracking

- 68 Fig. S 18 a EMI SE of the TOCNFs/Ti₃C₂T_x/AgNW hybrid films in the X-band region.
- 69 **b** SE_A, and **c** SE_R

Fig. S 19 The thickness of the FM2Ag2-Mix and FM2Ag2 hybrid films

Fig. S 20 Shielding efficiencies of the TOCNFs/Ti₃C₂T_x/AgNW hybrid films

Fig. S 21 CV curves and GCD curves of the TOCNFs/Ti₃C₂T_x/AgNW electrodes: a,f
FM4, b,g FM3Ag, c,h FMAg3, d,i FAg4, and e,j FM2Ag2-Mix at different current
densities

78

Fig. S 22 The liner relationship of the current (*i*) and the scan rate (*v*), and surface capacitance contribution of the TOCNFs/ $Ti_3C_2T_x$ /AgNW electrodes to the total charge storage at 50 mV s⁻¹: **a,f** FM4, **b,g** FM3Ag, **c,h** FMAg3, **d,i** FAg4, and **e,j** FM2Ag2-Mix

Fig. S 23 Normalized real (C') and imaginary (C") parts of capacitance vs. frequency
of the electrodes: a FM4, b FM3Ag, c FM2Ag2, d FMAg3, e FAg4, and f FM2Ag2Mix

87

88 Fig. S 24 Contact angle of TOCNFs/Ti₃C₂T_x/AgNW hybrid films

89 Tables

90	Table S1 The	e mechanical	properties	of the TO	CNFs/Ti ₃ C	$C_2T_x/AgNW$	hybrid films with
----	--------------	--------------	------------	-----------	------------------------	---------------	-------------------

91 different $Ti_3C_2T_x$ /AgNW contents

Sample	Tensile strength (MPa)	Fracture strain (%)	Toughness (MJ/m ³)	Young's modulus (GPa)
FM4	116.10 ± 8.19	2.85 ± 0.26	1.09 ± 0.08	9.02 ± 0.69
FM3Ag	107.41 ± 8.27	1.42 ± 0.20	0.68 ± 0.05	11.20 ± 0.85
FM2Ag2	85.63 ± 7.24	2.48 ± 0.24	1.02 ± 0.10	5.18 ± 0.29
FMAg3	76.89 ± 7.14	2.26 ± 0.27	0.94 ± 0.07	5.03 ± 0.31
FAg4	49.48 ± 5.67	1.74 ± 0.18	0.33 ± 0.07	$4.55{\pm}~0.67$
FM2Ag2-Mix	40.95 ± 5.29	1.57 ± 0.15	0.41 ± 0.08	3.98 ± 0.53

92

Samula	Materials	Thickness	Conductivity	EMI SE	SSE/t (dB	Deferences
Sample		(µm)	(S m ⁻¹)	(dB)	cm ² g ⁻¹)	Kelerences
1	CNF/CNT/Ti ₃ C ₂ T _x	12	365000	20.5	9316.4	1
2	Ag@CMS	1000	5.47×10^{-5}	107.5	853.3	2
3	Ag nanowires	5000	5.4×10^{-8}	35	2416	3
4	CNTs/Ti ₃ C ₂ MXene/CNFs	38	2506.6	38.4	8020	4
5	d-Ti ₃ C ₂ T _x /CNFs	167	9.691	25	1326	5
6	BMF/AgNW/M Xene	2000	24.5	52.6	5313	6
7	MXene/AgNW/ PU	1320	0.025	59	23674	7
8	PVDF/MXene/ AgNW	300	1.08	25.87	1091	8
9	CNF@MXene @AgNW	85	37378.2	55.9	10647.6	9
10	MXene/AgNW	16.9	30000	42.7	16724	10
11	graphene/PDM S foam	1000	2	30	500 dB cm ³ g ⁻¹	11
12	FM4	4	$\begin{array}{c} 1050000\\ \pm \ 135000\end{array}$	25.49	13918.31	
13	FM3Ag	4	8400000 ± 250000	45.57	24883.45	This work
14	FM2Ag2	4	12900000 ± 280000	51.30	28016.19	

Table S2 Comparison of the EMI shielding performance of the 95 $TOCNFs/Ti_3C_2T_x/AgNW$ hybrid films and other materials

15		4	18100000	59.70	22500.25
13	FMAg5		$\pm \ 290000$		52,599.55
16	Γ.Α 4	5	27700000	72.55	401(5.72)
16	rAg4	3	± 320000	/3.33	40105.72
17	EM24 ~2 Min	2	398000	24.67	12474 12
17	ΓΙνιΖΑΫΖ-ΙνιΙΧ	3	± 115000	24.07	134/4.13

98 Table S3 Comparison of electrochemical performance of electrodes between this work

99 and the published works on MXene hybrids

			Specific	Areal		
Sample	Materials	Scan rate	capacitance	capacitance	Stability	References
			(F g ⁻¹)	(mF cm ⁻²)		
1	Carbonized	$2 \text{ mV} \text{ s}^{-1}$	222.6	704.2	74% (10000	12
1	MXene/Cotton	2 111 V S	255.0	1)7.2	cycles)	
ſ	MVana/7nO	2	120	233	86% (10000	13
Z	WiXene/ZiiO	2 111 V S	120		cycles)	10
2	rGO/Ti ₃ C ₂	1 mA cm ⁻²	-	41	~100% (1500	14
3	composite aerogel			41	cycles)	
4	D olyostor@MVono			18 20	98.2% (6000	15
4	Folyestel@WIXelle	5 111 V S		10.39	cycles)	
5	CNF/CNT/Ti ₃ C ₂ T _x	0.3 mA	279.7	527	93.1% (8000	1
5		cm^{-2}		557	cycles)	
<i>.</i>	MXene/CNF	$2 \text{ mV} \text{ s}^{-1}$	285	25.3	100% (10000	15
6					cycles)	
	MXene $(Ti_3C_2T_x)/$	0.1 mA cm ⁻		143	90% (10000	17
7	CNF/PC	2	-		cycles)	
					94% (10000	
8	SF-MXene	10 mV s ⁻¹	380	-	cycles)	18
9	$Ti_3C_2T_x$	5 mV s^{-1}	273	-	88.6% (10000)	19
10	Ti ₃ C ₂ T _x /Ag NP	$2 \text{ mV} \text{ s}^{-1}$	-	332.2	87% (10000)	20
11	FM2Ag2	10 mV s ⁻¹	77.6	110.7	92.4% (10000)	
12	FM2Ag2-Mix	10 mV s ⁻¹	73.5	104.9	78.6% (10000)	
13	FMAg3	10 mV s ⁻¹	42.6	60.7	94.3% (10000)	This work
14	FAg4	10 mV s ⁻¹	11.9	16.9	86.7% (10000)	

101 **References**

- 102 1 B. Wang, Y. Li, W. Zhang, J. Sun, J. Zhao, Y. Xu, Y. Liu, H. Guo and D. Zhang, *Carbohydr. Polym.*,
 2022, 286, 119302.
- 104 2 H. Zhang and J. Zhang, J. Appl. Polym. Sci., 2020, 137, 48459.
- 105 3 J. Ma, K. Wang and M. Zhan, *Rsc Adv.*, 2015, **5**, 65283-65296.
- 106 4 W. Cao, C. Ma, S. Tan, M. Ma, P. Wan and F. Chen, Nano-Micro Lett., 2019, 11, 270-286.
- 107 5 W. Cao, F. Chen, Y. Zhu, Y. Zhang, Y. Jiang, M. Ma and F. Chen, Acs Nano, 2018, 12, 4583-4593.
- 108 6 C. Weng, G. Wang, Z. Dai, Y. Pei, L. Liu and Z. Zhang, *Nanoscale*, 2019, 11, 22804-22812.
- 109 7 Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu, M. Li, Y. Zhou, K. Jia, L. Yang and D. Wang, *Compos.* 110 *Sci. Technol.*, 2021, 215, 109023.
- 8 H. Cheng, Y. Pan, Q. Chen, R. Che, G. Zheng, C. Liu, C. Shen and X. Liu, *Adv. Compos. Hybrid Mater.*, 2021, 4, 505-513.
- 113 9 B. Zhou, Q. Li, P. Xu, Y. Feng, J. Ma, C. Liu and C. Shen, *Nanoscale*, 2021, 13, 2378-2388.
- 114 10 M. Miao, R. Liu, S. Thaiboonrod, L. Shi, S. Cao, J. Zhang, J. Fang and X. Feng, *J. Mater. Chem. C*,
 2020, 8, 3120-3126.
- 116 11 Z. Chen, C. Xu, C. Ma, W. Ren and H. Cheng, *Adv. Mater.*, 2013, **25**, 1296-1300.
- 117 12 Y. Li, Z. Lu, B. Xin, Y. Liu, Y. Cui and Y. Hu, Appl. Surf. Sci., 2020, 528, 146975.
- 118 13 F. Wang, M. Cao, Y. Qin, J. Zhu, L. Wang and Y. Tang, Rsc Adv., 2016, 6, 88934-88942.
- 119 14 R. N, K. A, M. H. M, N. M. R, D. Mondal, S. K. Nataraj and D. Ghosh, *Appl. Surf. Sci.*, 2019, 481,
 120 892-899.
- 121 15 W. Shao, M. Tebyetekerwa, I. Marriam, W. Li, Y. Wu, S. Peng, S. Ramakrishna, S. Yang and M.
 122 Zhu, J. Power Sources, 2018, 396, 683-690.
- 123 16 W. Tian, A. VahidMohammadi, M. S. Reid, Z. Wang, L. Ouyang, J. Erlandsson, T. Pettersson, L.
 124 Wågberg, M. Beidaghi and M. M. Hamedi, *Adv. Mater.*, 2019, **31**, 1902977.
- 125 17 W. Chen, D. Zhang, K. Yang, M. Luo, P. Yang and X. Zhou, Chem. Eng. J., 2021, 413, 127524.
- 126 18 L. Yin, H. Kang, H. Ma, J. Wang, Y. Liu, Z. Xie, Y. Wang and Z. Fan, *Carbon (New York)*, 2021,
 127 182, 124-133.
- 128 19 J. Wu, Q. Li, C. E. Shuck, K. Maleski, H. N. Alshareef, J. Zhou, Y. Gogotsi and L. Huang, *Nano Res.*,
 2022, 15, 535-541.
- 130 20 L. Li, N. Zhang, M. Zhang, L. Wu, X. Zhang and Z. Zhang, Acs Sustain. Chem. Eng., 2018, 6, 7442-
- 131 7450.
- 132