Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

SUPPORTING INFORMATION

Controllable redox reaction cycle enabled by multifunctional Rucontaining polyoxometalates-based catalysts

Huafeng Li, Zelong Yuan, Wenjing Chen, Mengnan Yang, Yahao Sun, Shihao Zhang, Pengtao Ma, Jingping Wang* and Jingyang Niu*

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng Henan 475004 (P.R. China)

E-mail: jpwang@henu.edu.cn; jyniu@henu.edu.cn

Experimental

Materials

All reagents were purchased from Sigma-Aldrich and TCI without any further purification.

Characterization

The compounds **1–3** powder was characterized by inductively coupled plasma optical emission spectrometry (ICP-OES, PerkinElmer Optima 2100 DV inductively coupled plasma), Fouriertransform infrared spectroscopy (FTIR, Bruker VERTEX 70), Powder X-ray diffraction (XRD, Bruker D8 Advance diffractometer), Ultraviolet-visible spectrophotometry (UV-vis, Hitachi U-4100 spectrophotometer), Thermogravimetric analysis (TGA, NETZSCH STA449F5/QMS403D), Xray photoelectron spectra (XPS, Kratos, Manchester, UK), and EPR spectra (Bruker EMX580 spectrometer). Ultraviolet photoemission spectroscopy (UPS, ESCALAB 250Xi, Thermo Fisher Scientifc) was performed to evaluate the energy band structure using the He I UPS spectrum from the excitation energy (21.22 eV). The reaction mixture was stirred and heated at the prescribed conditions on the parallel reactor of WATTCAS-1020 H. The photocatalytic reactions were performed on WATTCAS Parallel Light Reactor (WP-TEC-1020HSL) with 10 W COB LED. GC analyses were performed on a Bruker 450-GC with a flame ionization detector equipped with a 30 m column (GsBP-1, 0.25 mm internal diameter and 0.25 µm film thickness) with nitrogen as the carrier gas. ¹H NMR and ¹³C NMR spectra were taken on Bruker 500 MHz Liquid State NMR Spectrometer (¹H 500 MHz, ¹³C 126 MHz). Chemical shifts of ¹H NMR spectra and ¹³C NMR spectra were reported using residual solvent signal of CDCI₃ (δ = 7.26 ppm) and CDCI₃ (δ = 77.0 ppm) as internal standard, respectively.

Preparation of 2

Compound **2** was synthesized by using Na₂WO₄·2H₂O (4.0 g, 12 mmol) and Sb₂O₃ (0.35 g, 1.2 mmol) to 10 mL H₂O with stirring. After dissolution the pH was adjusted to 6.0 by adding 4 M HCl dropwise. RuCl₃ (0.25 g, 1.2 mmol) was added successively, followed by the adjustment pH = 4.5 with 4.0 M HCl (aq). This mixture was stirred until a black solution was formed. Then, CsCl (0.2 g, 1.2 mmol) was dissolved in above solution with stirred for 2 h at room temperature. The black solution was sealed in a Teflon-lined autoclave and heated at 200 °C for 72 h. After cooling down to room temperature, the filtrate was kept in a 25 mL beaker to allow slow evaporation at room temperature. After 2 weeks, black block crystals suitable for X-ray crystallography were isolated, filtrated, and air-dried to give 256 mg of **2** (7.8 % yield, based on W). Anal. Calcd (%) for **2**: Na, 0.89; Cs, 1.29; Ru, 0.98; W, 63.52; Sb, 3.56. Found: Na, 1.04; Cs, 1.11; Ru, 0.94; W, 64.14; Sb, 3.50. IR (KBr pellet) for **2**: λ = 3477 (s), 1620 (m), 972 (s), 906 (s), 840 (m) and 681 (m) cm⁻¹.

Preparation of 3

Compound **3** was synthesized by using Na₂WO₄·2H₂O (4.0 g, 12 mmol) and Sb₂O₃ (0.35 g, 1.2 mmol) to 10 mL H₂O with stirring. After dissolution the pH of the mixture was adjusted to 4.2 with 4.0 M HCl (aq) under stirring continuously. The yellow solution was sealed in a Teflon-lined autoclave and heated at 200 °C for 72 h. After cooling down to room temperature, the filtrate was kept in a 25 mL beaker to allow slow evaporation at room temperature. After 2 weeks, yellow block crystals suitable for X-ray crystallography were isolated, filtrated, and air-dried to give 528 mg of **3** (16.6 % yield, based on W). Anal. Calcd (%) for **3**: Na, 1.28; W, 68.72; Sb, 4.08. Found: Na, 1.42; W, 69.98; Sb, 4.24. IR (KBr pellet) for **3**: $\lambda = 3477$ (s), 1620 (m), 971 (s), 906 (s), 840 (m) and 685 (m) cm⁻¹.

X-ray crystallography

Suitable quality crystals of **1–3** were directly mounted in a cooled nitrogen gas stream on a Bruker D8 VENTURE PHOTON II CCD diffractometer with graphite-monochromated Mo K α radiation (the value of λ is 0.71073 Å). The structure was solved with the ShelXT structure solution program using intrinsic phasing and further refined by the full-matrix least-squares method on F² using the ShelXL refinement package within Olex-2. During the refinement, the command 'omit –3 50.2' was used for compounds **1–3** to remove the weak reflections above 50 degrees. In the last refinement cycles, all the atoms of the polyoxoanions **1–3** (Sb, Ru, W, Na, Cs, Cl and O) were refined anisotropically. All lattice water molecules were positioned using Fourier maps and established by TG analyses. The crystallographic data and structural determination of **1–3** are listed in Table S1. Further details on the crystal structure investigations quoting the depository numbers CCDC 2172137-2172139.

Heat treatment experiments

Compounds **1** and **3** (1.0 g) was transferred to a temperature-programmed tube furnace under N₂ flow (40–60 mL min⁻¹) and subsequently heat treated at 325 °C for 4 h with a heating rate of 5 °C min⁻¹. The sample was then cooled to room temperature naturally under Ar flow to obtain **1-HT** and **3-HT**.

Recycling experiments

The products of AOB, AB, NSB, NB and AN are soluble in the corresponding reaction system, but can successfully be separated by extraction with normal hexane without interfering with the catalyst. The experimental procedure was as follows: After the reaction is completed, an excess of normal hexane is added to the reaction system. After the intense shock stratification, the catalyst is retained in the solvent phase, and the product is retained in the normal hexane system. The two phases are separated, and the recovered catalyst was obtained by rotary evaporation in the solvent phase. The reusability was tested by three consecutive times for model substrates after the initial reaction (Figure 5).

Analysis of data

Compounds **1–3** were synthesized through a simple control composition strategy and characterized by FTIR, XRD, UV-vis, TGA, ICP and XPS analyses. The phase purity of compounds **1–3** are identified by the conformity between the experimental PXRD pattern and the simulated pattern on the strength of structural analyses (Figure 2a).¹ The characteristic vibration patterns of the lacunary Keggin-type POM framework dominate the IR spectra of **1–3** (Figure 2b). Several same characteristic bands were observed at 976, 906, 840 and 685 cm⁻¹ which are assigned to the characteristic $v_{as}(Sb-O_a)$, $v_{as}(W-O_t)$, $v_{as}(W-O_b)$, and $v_{as}(W-O_c)$.² The ultraviolet-visible (UV-vis) spectra in Figure S3 show that **1** and **2** exhibited one main absorption band with maxima at 400 nm, which could be assigned to the charge-transfer transition of $O \rightarrow Ru$.^{3,4} The determined number of crystal water molecules in **1–3** was 43, 113 and 56, respectively, as determined by the weight loss of TGA between 30-500 °C (Figures 4a, S1 and S2). Besides, the weight loss between 200 and 400 °C indicates the coordination of 18, 13 and 9 water molecules in **1–3**, which is agreement with the result by bond valence sum calculations. Elemental analyses were conducted by ICP-OES, confirming that the atomic ratio of W:Ru was 96.9:3.1 and 98.5:1.5 for **1** and **2**, respectively.

Figure S2. a) UV-vis DRS of compounds 1-3;b) the EPR spectra of heat treatment of 1. DPPH = di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium radical was used as a standard.

Figure S6. XRD spectra after heat treatment of a) **1**, and b) **3**. **Figure S7.** Recyclability tests for oxidation of AN to AOB, AB, NSB, NB in three consecutive runs, respectively.

Figure S9. a) The position of water molecules for 1; b) The position of water molecules for 2; b) The position of water molecules for 3. (RuO₆, yellow polytope; WO₆, sky blue polytope)

The structural differences of the three compounds are mainly reflected in the intermediate metallic oxygen clusters. Two WO_6 hexahedrons connect two W19 and W3 polyhedra in compound **3**, respectively, then, the anion carries two ruthenium atoms on the structure outside to form compound **2**. Four W12 and W34 atoms in compound **2** are replaced by Ru atoms to form compound **1**. In addition, the detail explanation of structural differences about three compounds also should be provide in the revised supplement information.

a)

b)

Figure S10. SEM images of a) 1 and b) 2.

This work:

 $MeOH-Na_2S_2O_8$ Toluene-Na₂S₂O₈ MeOH-K₂CO₃ MeOH-Na₂HAsO₄ Scheme S1. The reaction systems of photocatalytic reduction of NB to anilines and selective oxidation of anilines to AOB, AB,

NSB and NB.

Scheme S2. a) The synthesis mechanism of azobenzene from aniline in oxygen atmosphere proposed by Corma; b) Spin trapping mechanism of aniline radical with BHT. The reaction mixture was analyzed by GC-MS after cooling to room temperature.

Scheme S3. Reaction mechanism of NB reduction to anilines proposed by Haber.

Table S1. Crystal data and structure refinement for compounds 1-3.	
--	--

Compound	1	2	3
Formula	$Na_4Cs_2Sb_6O_{273}Ru_4W_{69}Cl_3$	$Na_8Cs_2Sb_6O_{296}Ru_2W_{71}Cl_6$	Na ₁₀ Sb ₆ O ₂₇₈ W ₆₇
М	18652.56	19384.43	17726.35
λ/Å	0.71073	0.71073	0.71073
T/K	150	150	150
Crystal dimensions/mm	0.11 × 0.08 × 0.07	0.18 × 0.16 × 0.12	0.1 × 0.05 × 0.04
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a/Å	20.0315 (5)	20.3555 (7)	18.065 (9)
b/Å	20.3566 (4)	20.4304 (6)	20.373 (9)
c/Å	21.2690 (5)	23.8990 (10)	24.517 (13)
α (°)	98.9870 (10)	79.8480 (10)	76.462 (14)
β (°)	115.7630 (10)	64.8990 (10)	73.843 (13)
γ (°)	92.0170 (10)	63.0760 (10)	64.497 (15)
V/Å ³	7663.0 (3)	8023.2 (5)	7754 (7)
Z	1	1	1
D₀/Mg m⁻³	4.042	4.012	3.796
µ/mm⁻¹	26.844	26.301	25.356
<i>F</i> (000)	7977.0	8316.0	7598.0
2θ Range/°	4.332 to 50.198	4.342 to 50.2	4.386 to 50.198
Data/restraints/parameters	27229/47/1666	28494/79/1765	27614/87/1639
$R_1(I > 2\sigma(I))^a$	R ₁ = 0.0463	R ₁ = 0.0535	R ₁ = 0.0527
wR ₂ (all data) ^b	wR ₂ = 0.1365	wR ₂ = 0.1611	wR ₂ = 0.1617
Goodness-of-fit on F ²	1.025	1.038	1.021

 ${}^{a}\overline{R_{1}=\Sigma||F_{o}|-|F_{c}||/\Sigma|F_{o}|}, {}^{b}wR_{2}=\{\Sigma[w(F_{o}^{2}-F_{c}^{2})^{2}]/\Sigma[w(F_{o}^{2})^{2}]\}^{1/2}$

Bond	Bond length	Bond	Bond length	Bond	Bond length
Ru1–O3	2.043 (11)	Ru1–011	1.893 (11)	Ru1–012	1.926 (11)
Ru1–O22	2.072 (11)	Ru1–024	1.905 (11)	Ru1–O41	2.043 (10)
Ru2–092	2.068 (10)	Ru2–0121	2.430 (13)	Ru2–0122	2.18 (3)
Ru2–0123	2.21 (3)	Ru2–0124	2.25 (3)	Ru2–O108	2.114 (11)
Ru3–Cl1	2.363 (10)	Ru3–Cl2	2.348 (12)	Ru3–Cl3	2.361 (11)
Ru3–089	2.032 (12)	Ru3–096	1.991 (13)	Ru3–097	2.017 (12)
Sb1–O4	1.994 (10)	Sb1–O13	2.011 (9)	Sb1-040	2.003 (10)
Sb2059	1.990 (9)	Sb2-066	1.985 (10)	Sb2-027	1.994 (9)
Sb3053	2.020 (10)	Sb3–O55	1.972 (10)	Sb3046	2.001 (10)
W1–O1	2.074 (10)	W1–O2	1.897 (9)	W1–O3	1.755 (10)
W1–O10	1.920 (9)	W1–O19	2.220 (10)	W1–O47	1.781 (10)
W2-05	2.116 (10)	W2–O6	1.941 (9)	W2-092	1.771 (10)
W2-041	1.764 (10)	W2–017	1.911 (9)	W2-052	2.231 (9)
W3–O52	1.739 (10)	W3–O1	1.839 (10)	W3–O70	1.975 (10)
W3–O13	2.203 (9)	W3–O30	1.915 (10)	W3–O36	1.959 (10)
W4–O5	1.818 (9)	W4–O14	1.983 (10)	W4–O18	1.901 (10)
W4–O19	1.769 (10)	W4–O25	1.949 (10)	W4-027	2.225 (10)
W5–O59	2.276 (10)	W5–O61	1.960 (11)	W5–O6	1.900 (10)
W5–O18	1.925 (10)	W5–O26	1.916 (10)	W5–O99	1.708 (11)
W6-O20	2.088 (10)	W6–O22	1.755 (11)	W6-087	1.851 (10)
W6-090	2.264 (11)	W6–O34	2.002 (10)	W6–O108	1.766 (10)
W7–O50	1.964 (10)	W7–O59	2.284 (10)	W7–O61	1.920 (10)
W7–O21	1.882 (10)	W7–O28	1.935 (10)	W7–O105	1.722 (11)
W8–07	1.904 (10)	W8–O13	2.291 (11)	W8–O16	1.910 (10)
W8–O80	1.924 (10)	W8–O36	1.896 (10)	W8–O106	1.715 (11)
W9–O48	1.950 (11)	W9–O4	2.295 (10)	W9–O10	1.927 (10)
W9–O91	1.704 (12)	W9–O30	1.906 (10)	W9–O38	1.913 (9)
W10–O55	2.256 (11)	W10–O81	1.991 (11)	W10–O29	1.910 (9)
W10–O93	1.722 (11)	W10–O33	1.947 (10)	W10–O42	1.897 (11)
W11–O14	1.884 (11)	W11–O27	2.280 (10)	W11–O35	1.951 (11)
W11–O98	1.728 (11)	W11–O39	1.902 (10)	W11–O43	1.916 (10)
W12–O63	1.996 (11)	W12–O64	1.961 (10)	W12–O74	1.935 (10)
W12–O20	1.831 (10)	W12–O88	1.734 (11)	W12–O46	2.275 (10)
W13–O55	2.305 (11)	W13–O74	1.903 (11)	W13–O32	1.951 (10)
W13–O34	1.856 (10)	W13–O100	1.713 (12)	W13–O42	1.990 (11)
W14–O62	1.951 (11)	W14–O64	1.913 (12)	W14–O8	1.919 (9)
W14–O85	1.927 (11)	W14–O103	1.709 (11)	W14–O46	2.260 (10)
W15–O51	1.915 (11)	W15–O70	1.902 (10)	W15–O13	2.314 (9)
W15–O80	1.937 (11)	W15–O86	1.921 (11)	W15–O111	1.707 (12)
W16–O56	1.913 (11)	W16–O68	1.900 (11)	W16–O25	1.924 (11)
W16–O27	2.320 (9)	W16–O39	1.945 (10)	W16–O113	1.704 (11)
W17–O66	2.229 (10)	W17–O69	1.937 (11)	W17–O76	1.945 (12)
W17–O23	1.907 (9)	W17–O97	1.724 (12)	W17–O45	1.882 (10)
W18–O56	1.891 (11)	W18–O59	2.315 (10)	W18–O78	1.912 (11)
W18–O26	1.919 (11)	W18–O28	1.952 (10)	W18–O107	1.702 (11)
W19–O53	2.319 (10)	W19–O67	1.949 (11)	W19–O81	1.879 (10)
W19–O82	1.939 (11)	W19–O83	1.920 (10)	W19–O104	1.707 (12)
W20-O53	2.232 (11)	W20–O54	1.889 (10)	W20–O77	1.926 (11)
W20-083	1.938 (10)	W20–O89	1.714 (11)	W20–O37	1.902 (10)
W21–O67	1.885 (11)	W21–O55	2.338 (10)	W21–O79	1.907 (10)

Table S2. Selected bond distances of compound 1.

W21–O32	1.945 (11)	W21–O33	1.902 (10)	W21–O101	1.726 (11)
W22–O48	1.898 (11)	W22–O49	1.944 (10)	W22–O4	2.276 (10)
W22–O71	1.964 (12)	W22–O15	1.926 (10)	W22–O102	1.699 (12)
W23–O49	1.922 (11)	W23–O51	1.893 (11)	W23–O4	2.295 (9)
W23–O73	1.858 (11)	W23–O38	1.956 (11)	W23–O226	1.728 (11)
W24–O50	1.884 (10)	W24–O58	1.914 (12)	W24–O66	2.333 (10)
W24–O76	1.922 (11)	W24–O78	1.938 (11)	W24–O120	1.721 (10)
W25–O58	1.958 (11)	W25–O66	2.346 (11)	W25–O68	1.935 (11)
W25–O69	1.919 (11)	W25–O95	1.687 (11)	W25–O35	1.913 (11)
W26-063	1.901 (12)	W26–O79	1.902 (10)	W26–O85	1.942 (11)
W26–O94	1.900 (12)	W26–O115	1.717 (12)	W26–O46	2.317 (10)
W27–O53	2.300 (10)	W27–O62	1.894 (11)	W27–O77	1.966 (11)
W27–O82	1.917 (11)	W27–O94	1.931 (13)	W27–O110	1.712 (10)
W28–O54	1.900 (10)	W28–O75	2.173 (11)	W28–O21	1.979 (10)
W28–O23	1.876 (9)	W28–O24	1.809 (11)	W28–O29	1.952 (10)
W29–O60	1.935 (11)	W29–O65	1.946 (11)	W29–O9	1.897 (10)
W29–O96	1.765 (13)	W29–O40	2.235 (11)	W29–O44	1.895 (10)
W30-O60	1.913 (12)	W30–O72	1.928 (11)	W30–O16	1.922 (10)
W30-O86	1.923 (11)	W30–O40	2.332 (11)	W30–O109	1.729 (12)
W31–O7	1.925 (10)	W31–O9	1.886 (10)	W31–O12	1.816 (11)
W31–O84	2.169 (12)	W31–O43	1.930 (10)	W31–O45	1.896 (9)
W32–O57	2.159 (11)	W32–O8	1.930 (10)	W32–O11	1.829 (11)
W32–O15	1.933 (11)	W32–O37	1.891 (10)	W32–O44	1.882 (10)
W33–O65	1.894 (12)	W33–O71	1.878 (12)	W33–O72	1.949 (11)
W33–O73	1.984 (12)	W33–O40	2.313 (10)	W33–O114	1.706 (12)
W34–O87	1.936 (11)	W34–O112	2.424 (16)	W34–O117	1.746 (16)
W34–O118	1.741 (16)	W34–O119	2.097 (11)	W34–O47	2.128 (10)
W35–O2	1.908 (9)	W35–O17	1.892 (9)		

Bond	Bond length	Bond	Bond length	Bond	Bond length
Ru1–Cl1	2.335 (13)	Ru1–Cl2	2.309 (9)	Ru1–Cl3	2.322 (16)
Ru1–054	2.013 (14)	Ru1–087	1.987 (13)	Ru1–094	2.002 (13)
Sb1–O50	1.956 (12)	Sb1–O63	2.020 (12)	Sb1-064	1.994 (11)
Sb2-061	2.000 (13)	Sb2025	2.021 (12)	Sb2-034	2.008 (11)
Sb3–O62	1.993 (12)	Sb3–O69	1.997 (11)	Sb3–O19	1.992 (12)
W1–O55	1.793 (11)	W1–O3	2.072 (11)	W1–O4	1.851 (11)
W1–O13	2.226 (11)	W1–O20	1.946 (10)	W1–O21	1.756 (11)
W2-071	1.918 (11)	W2–O13	1.757 (11)	W2–O79	1.994 (12)
W2-025	2.205 (12)	W2-044	1.931 (12)	W2-045	1.809 (11)
W3-027	1.767 (12)	W3–O32	1.717 (12)	W3–O33	1.901 (11)
W3–O37	1.884 (11)	W3–O42	2.214 (13)	W3–O45	2.120 (12)
W4-063	2.193 (12)	W4–O3	1.826 (11)	W4–O15	1.942 (11)
W4-042	1.767 (13)	W4–O46	1.917 (12)	W4-043	1.987 (11)
W5-063	2.290 (12)	W5–O8	1.948 (11)	W5–O72	1.912 (12)
W5–O12	1.898 (11)	W5–O109	1.701 (13)	W5–O43	1.907 (12)
W6-068	1.975 (13)	W6–O71	1.912 (12)	W6-089	1.909 (12)
W6-033	1.940 (11)	W6–O34	2.246 (12)	W6-098	1.741 (14)
W7–O51	1.938 (12)	W7–O67	1.942 (14)	W7–O18	1.915 (11)
W7–O25	2.289 (12)	W7–O108	1.719 (13)	W7–O44	1.888 (12)
W8–O1	1.959 (12)	W8–O64	2.282 (12)	W8–O11	1.879 (12)
W8–075	1.691 (12)	W8–O20	1.909 (11)	W8-046	1.896 (12)
W9–O50	2.239 (12)	W9–O16	1.893 (13)	W9–O23	1.856 (13)
W9–087	1.751 (13)	W9–O91	1.952 (12)	W9–O92	1.982 (12)
W10–O58	1.851 (13)	W10–O64	2.310 (11)	W10–O11	2.008 (12)
W10–O17	1.928 (13)	W10-082	1.912 (13)	W10–O107	1.728 (12)
W11–O69	2.258 (12)	W11–O14	1.843 (11)	W11–O90	1.958 (13)
W11–O35	1.942 (12)	W11–O39	1.990 (14)	W11–O106	1.699 (14)
W12–O52	2.256 (12)	W12–O2	1.732 (14)	W12–O66	1.783 (11)
W12–O14	2.073 (12)	W12-022	1.964 (11)	W12–O115	1.871 (14)
W13–O54	1.750 (14)	W13–O59	1.878 (12)	W13–O61	2.210 (14)
W13–O73	1.974 (13)	W13–O77	1.899 (13)	W13–O83	1.949 (13)
W14–O63	2.300 (12)	W14–O72	1.937 (12)	W14–O15	1.924 (11)
W14–O82	1.907 (12)	W14–O30	1.879 (12)	W14–O102	1.716 (12)
W15–O53	1.947 (12)	W15–O60	1.857 (12)	W15–O9	1.887 (12)
W15–O19	2.222 (13)	W15–O94	1.731 (13)	W15–O38	1.949 (12)
W16–O62	2.275 (12)	W16–O5	1.896 (12)	W16–O6	1.977 (13)
W16–O86	1.875 (14)	W16–O97	1.939 (12)	W16–O111	1.702 (13)
W17–O62	2.275 (13)	W17–O7	1.921 (14)	W17–O22	1.889 (11)
W17–O86	2.007 (12)	W17–O90	1.876 (13)	W17–O100	1.697 (14)
W18–O50	2.361 (12)	W18–O8	1.904 (12)	W18–O92	1.902 (12)
W18–O30	1.973 (12)	W18–O96	1.708 (13)	W18–O41	1.932 (12)
W19–O57	1.967 (12)	W19–O68	1.904 (12)	W19–O81	1.938 (13)
W19–O34	2.272 (12)	W19–O104	1.712 (14)	W19–O47	1.876 (11)
W20–O69	2.272 (11)	W20-070	1.911 (13)	W20–O35	1.919 (11)
W20–O105	1.718 (13)	W20-O40	1.913 (13)	W20–O48	1.946 (12)
W21–O49	1.867 (12)	W21–O50	2.360 (11)	W21–O58	1.973 (12)
W21–O91	1.891 (14)	W21–O99	1.716 (13)	W21–O41	1.928 (12)
W22–O49	1.992 (12)	W22–O1	1.924 (12)	W22–O64	2.281 (12)
W22–O17	1.983 (12)	W22–O85	1.730 (13)	W22–O29	1.864 (11)
W23–O74	1.880 (14)	W23–O76	1.878 (13)	W23–O81	1.928 (14)

Table S3. Selected bond distances of compound 2.

W23–O89	1.939 (14)	W23–O34	2.320 (11)	W23–O119	1.729 (12)
W24–O65	1.940 (13)	W24–O6	1.871 (13)	W24–O80	1.913 (13)
W24–O19	2.325 (12)	W24–O38	1.909 (13)	W24–O112	1.723 (14)
W25–O53	1.933 (12)	W25–O80	1.960 (13)	W25–O19	2.336 (12)
W25–O93	1.928 (15)	W25–O95	1.701 (15)	W25–O40	1.912 (13)
W26–O51	1.935 (12)	W26–O56	1.924 (14)	W26–O76	1.916 (13)
W26–O79	1.897 (13)	W26–O25	2.305 (11)	W26–O114	1.727 (13)
W27–O69	2.324 (12)	W27–O93	1.895 (15)	W27–O101	1.707 (13)
W27–O103	1.889 (13)	W27–O39	1.911 (14)	W27–O48	1.935 (12)
W28–O62	2.317 (12)	W28–O65	1.873 (13)	W28–O7	1.971 (13)
W28–O97	1.939 (13)	W28–O103	1.920 (13)	W28–O113	1.709 (13)
W29–O57	1.862 (12)	W29–O61	2.329 (12)	W29–O73	1.888 (15)
W29–O74	1.964 (15)	W29–O88	1.917 (14)	W29–O120	1.732 (14)
W30-O56	1.924 (14)	W30-O61	2.329 (13)	W30-O67	1.896 (13)
W30-O83	1.929 (15)	W30-O88	1.941 (13)	W30–O116	1.721 (14)
W31–O12	1.936 (12)	W31–O16	1.879 (13)	W31–O77	1.876 (12)
W31–O18	1.920 (12)	W31–O26	1.969 (12)	W31–O31	2.037 (11)
W32–O59	1.899 (12)	W32–O5	1.944 (12)	W32–O9	1.889 (12)
W32–O84	1.939 (12)	W32–O24	2.064 (11)	W32–O47	1.965 (12)
W33–O60	1.906 (12)	W33–O10	1.897 (13)	W33–O70	1.932 (13)
W33–O23	1.915 (13)	W33–O28	2.128 (13)	W33–O29	1.984 (12)
W34-O66	2.089 (11)	W34–O10	1.836 (13)	W34–O21	2.108 (11)
W34–O84	1.828 (13)	W34–O26	1.864 (12)	W34–O27	2.087 (12)
W35–O55	2.112 (11)	W35–O115	1.907 (14)	W35–O117	2.102 (12)
W35–O118	2.393 (16)	W35–O121	1.734 (17)	W35–O122	1.730 (19)
W36–O4	1.925 (12)	W36–O78	1.700 (13)	W36–O37	1.923 (12)

Bond Bond Bond length Bond length Bond Bond length Sb1-066 2.016 (12) Sb1-040 1.996 (13) Sb1-048 1.994 (12) Sb2-014 2.019 (12) Sb2-O20 1.996 (12) Sb2-034 1.980 (11) Sb3-09 2.010 (15) Sb3-083 1.994 (14) Sb3-0109 1.990 (13) W1-O2 1.815 (13) W1-014 2.208 (11) W1-018 1.985 (12) W1-022 1.946 (12) W1-O30 1.743 (12) W1-032 1.957 (11) W2-O26 1.930 (11) W2-028 1.799 (11) W2-093 1.734 (13) W2-06 1.877 (10) W2-062 2.217 (13) W2-02 2.177 (11) W3-04 2.165 (11) W3-08 1.925 (12) W3-012 1.878 (12) W3-O102 1.737 (11) W3-042 1.758 (11) W3-O30 2.224 (12) W4-062 1.765 (12) W4-064 1.942 (13) W4-066 2.210 (11) W4-04 1.805 (11) W4-016 1.922 (14) W4-038 1.980 (11) W5-052 1.890 (14) W5-O20 2.275 (12) W5-022 1.887 (12) W5-026 1.918 (13) W5-094 1.971 (13) W5-0103 1.714 (14) W6-074 1.957 (11) W6-076 1.939 (14) W6-077 1.709 (13) W6-014 2.283 (11) W6-024 1.898 (13) W6-O32 1.894 (12) W7-08 1.928 (11) W7-016 1.895 (14) W7-082 1.966 (14) W7-090 1.739 (13) W7-O36 1.893 (13) W7-040 2.265 (12) W8-054 W8-076 1.928 (12) 1.932 (13) W8-014 2.309 (13) W8-018 1.904 (11) W8-0110 1.739 (14) W8-046 1.896 (13) W9-070 1.874 (12) W9-098 W9-034 1.987 (13) 2.279 (13) W9-0100 1.872 (13) W9-0101 1.922 (15) W9-0107 1.669 (16) W10-O67 1.975 (15) W10-072 1.870 (13) W10-011 1.971 (13) W10-O43 W10-O44 1.720 (14) 1.879 (13) W10-O48 2.260 (12) W11-O66 2.307 (12) W11-O13 W11-O91 1.899 (16) 1.912 (18) W11-O38 1.902 (12) W11-O108 1.894 (13) W11-O47 1.747 (13) W12-O61 1.679 (16) W12-O64 1.905 (12) W12-O66 2.284 (13) W12-O68 1.944 (14) W12-O10 1.892 (11) W12-091 1.957 (14) W13-O52 1.996 (12) W13-O54 1.896 (12) W13-081 1.716 (15) W13-O20 2.312 (13) W13-O96 1.845 (14) W13-0112 1.918 (13) W14-O60 W14-082 W14-086 1.849 (13) 1.902 (15) 1.983 (13) W14-087 1.704 (16) W14-040 2.251 (14) W14-0111 1.979 (13) W15-O58 W15-07 W15-O20 2.274 (12) 1.845 (15) 1.981 (13) W15-O27 1.692 (14) W15-O94 1.914 (13) W15-0112 1.975 (14) W16-O63 1.943 (13) W16-071 1.917 (15) W16-078 1.912 (12) W16-O84 1.903 (15) W16-O85 1.720 (14) W16-O109 2.283 (13) W17-074 1.880 (11) W17-O34 2.328 (12) W17-O101 1.889 (17) W17-O104 1.942 (13) W17-O45 1.728 (14) W17-O46 1.941 (14) W18-O13 1.911 (16) W18-O86 1.871 (16) W18-O31 1.695 (14) W18-O36 1.972 (12) W18-O106 1.854 (13) W18-O40 2.339 (12) W19-O56 1.763 (13) W19-088 2.205 (12) W19-O92 1.754 (15) W19-O28 2.070 (11) W19-O42 2.122 (11) W19-0113 1.764 (12) W20-O3 W20-07 W20-O96 1.715 (14) 1.896 (14) 1.971 (15) W20-098 W20-O34 1.872 (14) 2.332 (12) W20-O104 1.934 (14) W21-O68 1.886 (15) W21-011 1.923 (12) W21-079 1.932 (17) W21-O25 W21-O108 W21-O48 1.716 (15) 1.949 (13) 2.285 (13) W22-O65 1.956 (14) W22-O9 2.257 (14) W22-O95 1.864 (14) W22-O99 1.865 (13) W22-O35 1.698 (18) W22-O39 1.908 (15) W23-O55 1.939 (12) W23-O59 1.981 (15) W23-O83 2.314 (17) W23-O37 1.704 (18) W23-O105 1.889 (12) W23-O41 1.867 (14) W24-O48 2.345 (15) W24-05 1.702 (18) W24-067 1.891 (13)

Table S4. Selected bond distances of compound 3.

W24–O79	1.909 (16)	W24–O106	1.970 (12)	W24–O111	1.866 (14)
W25–O53	1.922 (16)	W25–O57	1.894 (14)	W25–O1	1.735 (19)
W25–O65	1.887 (15)	W25–O71	1.932 (15)	W25–O109	2.275 (15)
W26–O53	1.930 (17)	W26–O59	1.861 (16)	W26–O63	1.896 (14)
W26–O73	1.930 (15)	W26–O21	1.742 (16)	W26–O109	2.307 (14)
W27–O55	1.938 (16)	W27–O69	1.831 (13)	W27–O73	1.939 (14)
W27–O75	1.883 (19)	W27–O17	1.686 (16)	W27–O83	2.335 (14)
W28–O49	1.758 (14)	W28–O51	1.94 (2)	W28–O9	2.241 (13)
W28–O80	2.052 (13)	W28–O23	1.730 (15)	W28–O95	2.001 (14)
W29–O57	1.961 (14)	W29–O9	2.323 (15)	W29–O75	1.908 (18)
W29–O80	1.847 (13)	W29–O33	1.672 (18)	W29–O39	1.934 (15)
W30–O51	1.90 (2)	W30-O69	2.079 (14)	W30–O15	1.732 (15)
W30–O19	1.792 (16)	W30-O83	2.223 (13)	W30-O41	2.010 (17)
W31–O56	2.204 (13)	W31–O70	1.901 (12)	W31–O10	1.962 (11)
W31–O24	1.950 (13)	W31–O89	1.769 (13)	W31–O44	1.904 (13)
W32-O56	1.612 (15)	W32-070	1.969 (17)	W32–O10	1.962 (15)
W32–O24	1.989 (19)	W32-089	2.358 (15)	W32-O44	1.922 (18)
W33-O60	2.007 (13)	W33–O72	1.916 (13)	W33–O78	1.895 (12)
W33–O92	2.120 (15)	W33–O97	2.052 (13)	W33–O99	1.954 (13)
W34–O58	1.996 (15)	W34–O84	1.878 (15)	W34–O29	2.035 (12)
W34–O100	1.903 (13)	W34–O105	1.964 (13)	W34–O113	2.098 (12)
W35–O50	1.726 (11)	W35–O6	1.921 (10)	W35–O12	1.930 (12)

Atom	BVS	Atom	BVS	Atom	BVS	Atom	BVS
01	1.89	02	1.69	O3	2.03	O4	2.16
O5	1.89	O6	1.98	07	2.01	O8	1.96
O9	2.14	O10	1.97	011	1.99	O12	1.97
O13	2.07	O14	1.93	O15	1.93	O16	2.01
017	2.05	O18	2.02	O19	1.93	O20	1.89
O21	1.94	O22	1.99	O23	1.81	O24	2.03
O25	2.05	O26	1.90	O27	2.20	O28	1.86
O29	1.93	O30	2.04	O31	0.32	O32	1.54
O33	1.96	O34	1.97	O35	1.92	O36	1.95
O37	2.11	O38	1.91	O39	2.14	O40	2.01
O41	1.99	O42	1.88	O43	1.97	O44	2.16
O45	2.16	O46	2.04	O47	2.01	O48	1.97
O49	1.92	O50	1.97	O51	2.07	O52	2.05
O53	2.00	O54	2.13	O55	2.07	O56	2.08
O57	0.52	O58	1.90	O59	20.4	O60	1.96
O61	1.88	O62	1.98	O63	1.85	O64	1.90
O65	1.99	O66	2.04	O67	2.01	O68	2.00
O69	1.94	O70	1.90	071	1.99	072	1.89
073	2.01	074	1.99	075	0.50	O76	1.91
077	1.85	078	1.96	O79	2.07	O80	1.93
O81	1.93	O82	1.94	O83	1.94	O84	0.51
O85	1.91	O86	1.97	O87	2.15	O88	1.64
O89	2.22	O90	0.39	O91	1.78	O92	1.96
O93	1.69	O94	2.01	O95	1.86	O96	2.06
O97	2.20	O98	1.67	O99	1.76	O100	1.74
O101	1.68	O102	1.80	O103	1.75	O104	1.76
O105	1.69	O106	1.73	O107	1.79	O108	1.88
O109	1.66	O110	1.74	0111	1.76	O112	0.25
O113	1.78	O114	1.77	O115	1.72	O116	1.67
0117	1.59	O118	1.61	O119	0.61	O120	1.70
O121	0.15	O122	0.25	O123	0.17	O124	0.16

Table S5. BVS values of selected O atoms of compound 1.

Atom	BVS	Atom	BVS	Atom	BVS	Atom	BVS
01	1.87	02	1.65	O3	1.94	O4	2.11
O5	1.99	O6	1.98	07	1.85	O8	1.96
O9	2.16	O10	2.30	011	1.89	O12	2.00
O13	1.97	O14	1.88	O15	1.92	O16	2.18
017	1.81	O18	2.00	O19	2.04	O20	1.95
O21	2.14	O22	1.96	O23	2.18	O24	0.67
O25	2.05	O26	2.02	O27	2.13	O28	0.57
O29	1.99	O30	1.97	O31	0.72	O32	1.72
O33	1.98	O34	2.04	O35	1.93	O37	2.12
O38	1.94	O39	1.84	O40	2.02	O41	1.93
O42	1.95	O43	1.88	O44	2.04	O45	1.92
O46	2.06	O47	2.00	O48	1.88	O49	1.96
O50	2.07	O51	1.90	O52	0.40	O53	1.88
O54	2.09	O55	1.99	O56	1.96	O57	2.03
O58	2.05	O59	2.16	O60	2.21	O61	2.04
O62	2.05	O63	2.08	O64	2.04	O65	2.07
O66	2.06	O67	1.99	O68	1.89	O69	2.05
O70	1.98	071	2.01	072	1.96	073	1.94
074	1.99	075	1.84	O76	2.11	077	2.17
078	0.36	O79	1.87	O80	1.90	O81	1.92
O82	2.04	O83	1.89	O84	2.21	O85	1.66
O86	1.90	O87	2.12	O88	1.94	O89	1.96
O90	2.01	O91	1.98	O92	1.88	O93	2.03
O94	2.19	O95	1.79	O96	1.76	O97	1.88
O98	1.61	O99	1.72	O100	1.81	O101	1.76
O102	1.72	O103	2.07	O104	1.74	O105	1.71
O106	1.80	O107	1.67	O108	1.71	O109	1.79
O111	1.79	0112	1.69	0113	1.75	O114	1.67
O115	2.16	O116	1.70	0117	0.60	O118	0.28
O119	1.66	O120	1.65	O121	1.64	O122	1.66

Table S6. BVS values of selected O atoms of compound 2.

Atom	BVS	Atom	BVS	Atom	BVS	Atom	BVS
01	1.64	02	1.81	O3	1.73	O4	1.87
O5	1.79	O6	2.10	07	1.90	O8	1.95
O9	2.05	O10	2.84	011	1.85	O12	2.14
O13	2.07	O14	2.06	O15	1.65	O16	2.05
017	1.87	O18	1.87	O19	1.41	O20	2.04
O21	1.60	O22	2.01	O23	1.66	O24	1.88
O25	1.72	O26	1.96	O27	1.84	O28	2.04
O29	0.73	O30	2.04	O31	1.82	O32	1.96
O33	1.94	O34	2.01	O35	1.81	O36	1.93
O37	1.78	O38	1.88	O39	1.98	O40	2.06
O41	1.92	O42	2.11	O43	1.70	O44	2.09
O45	1.67	O46	2.00	O47	1.58	O48	2.02
O49	1.54	O50	0.33	O51	1.99	O52	1.88
O53	1.95	O54	2.03	O55	1.89	O56	1.98
O57	1.95	O58	2.02	O59	2.00	O60	1.99
O61	1.90	O62	1.95	O63	1.99	O64	1.97
O65	1.98	O66	2.06	O67	1.93	O68	2.01
O69	1.91	O70	1.99	071	1.96	072	2.14
073	1.91	074	2.00	075	2.12	O76	1.90
077	1.75	078	2.07	O79	1.98	O80	1.90
O81	1.72	O82	1.92	O83	2.05	O84	2.15
O85	1.70	O86	1.97	O87	1.78	O88	0.46
O89	0.30	O90	1.62	O91	1.91	O92	2.13
O93	1.64	O94	1.87	O95	1.95	O96	2.08
O97	0.69	O98	1.96	O99	2.06	O100	2.17
O101	1.90	O102	1.63	O103	1.73	O104	1.89
O105	1.96	O106	2.05	O107	1.95	O108	1.98
O109	2.06	O110	1.62	O111	1.99	O112	1.85
O113	2.13						

Table S7. BVS values of selected O atoms of compound 3.

Table S9. Screening of solvents for apiling evidation	α_{vor} 1 in $\square \square \alpha_{\text{vor}}$ average
able 58. Screening of solvents for aniline oxidation	over 1 in H ₂ O ₂ system. ^a

		-			•	
Entry	Solvent	Conv. %	Sel. of AOB % ^b	Sel. of AB % ^b	Sel. of NSB % ^b	Sel. of NB % ^b
1	Methanol	86	63	35	2	0
2	Ethanol	83	62	31	1	5
3	Acetonitrile	82	51	43	2	4
4	Acetone	79	60	33	5	2
5	Acetic acid	76	57	42	1	0
6	Diethyl ether	79	51	44	4	1
7	Petroleum ether	86	63	36	1	0
8	N-hexane	78	52	42	5	1
9	Cyclohexane	71	56	48	1	1
10	Toluene	64	34	31	31	3
11	Dichloromethane	77	49	46	3	1
12	Mesitylene	58	26	40	31	3

^a Reaction conditions: aniline (1 mmol), catalyst (0.1 mol%), solvent (1 mL), H₂O₂ (30%, w/w, 2.0 equiv.), 30 °C, 12 h. ^b Determined by GC and naphthalene as internal standard.

Entry	Additive (equiv)	Conv. %	Sel. of AOB % ^c	Sel. of AB % ^c	Sel. of NSB % ^c	Sel. of NB % ^c
1	As ₂ O ₃	88	76	22	2	0
2	NaAsO ₂	93	73	26	1	0
3	Na ₂ HAsO ₄	95	96	3	1	0
4	K ₃ PO ₄	90	67	28	4	1
5	Na_2SO_3	74	52	47	1	0
6	Na ₂ HSO ₃	82	53	43	4	0
7	Na_2SO_4	88	41	58	1	0
8	$Na_2S_2O_3$	74	58	37	5	0
9	$Na_2S_2O_4$	76	51	45	4	0
10	$Na_2S_2O_8$	99	20	79	1	0
11 ^b	$Na_2S_2O_8$	99	0	12	88	0
12	K ₂ CO ₃	82	14	32	3	51
13	Na ₂ CO ₃	71	28	36	6	31
14	NaHCO ₃	71	25	46	3	27

^a Reaction conditions: aniline (1 mmol), catalyst (0.1 mol%), methanol (1 mL), H₂O₂ (30%, w/w, 2.0 equiv.), 30 °C, 12 h. ^b Toluene (1 mL). ^c Determined by GC and naphthalene as internal standard.

Table S10. Optimization of the reaction conditions for oxidation of anline to AOB over 1 in H₂O₂ system.^a

Entr	Catalyst	T/ ⁰C	Time	H_2O_2	Solvent	Additive	Conv. %	Sel. of
У	(mol%)		(h)	(equiv)	(mL)	(equiv)		AOB % ^b
1	0.1	40	12	2.0	1	Na ₂ HAsO ₄ (0.075)	99	98
2	0.1	40	12	2.0	1	Na ₂ HAsO ₄ (0.05)	99	97
3	0.1	40	12	2.0	1	Na ₂ HAsO ₄ (0.025)	99	96
4	0.15	40	12	2.0	1	Na ₂ HAsO ₄ (0.05)	99	97
5	0.05	40	12	2.0	1	Na ₂ HAsO ₄ (0.05)	99	96
6	0.1	30	12	2.0	1	Na ₂ HAsO ₄ (0.05)	98	95
7	0.1	50	12	2.0	1	Na ₂ HAsO ₄ (0.05)	99	95
8	0.1	40	12	2.5	1	Na ₂ HAsO ₄ (0.05)	99	89
9	0.1	40	12	1.5	1	Na ₂ HAsO ₄ (0.05)	98	91
10	0.1	40	24	2.0	1	Na ₂ HAsO ₄ (0.05)	99	97
11	0.1	40	6	2.0	1	Na ₂ HAsO ₄ (0.05)	98	91
12	0.1	40	12	2.0	2	Na ₂ HAsO ₄ (0.05)	97	80
13	0.1	40	12	2.0	0.5	Na ₂ HAsO ₄ (0.05)	99	74

^a Reaction conditions: aniline (1 mmol), solvent (methanol). ^b Determined by GC and naphthalene as internal standard.

Table S11. Optimization of the reaction conditions for oxidation of anline to AB over 1 in H₂O₂ system.^a

Entry	Catalyst	T/ °C	Time	H_2O_2	Solvent	Additive	Conv.	Sel. of AB % ^b
	(mol%)		(h)	(equiv)	(mL)	(equiv)	%	
1	0.1	40	24	1.6	3	Na ₂ S ₂ O ₈ (0.075)	99	98
2	0.1	40	24	1.6	3	Na ₂ S ₂ O ₈ (0.05)	99	97
3	0.1	40	24	1.6	3	Na ₂ S ₂ O ₈ (0.025)	95	96
4	0.15	40	24	1.6	3	Na ₂ S ₂ O ₈ (0.05)	99	97
5	0.05	40	24	1.6	3	Na ₂ S ₂ O ₈ (0.05)	90	94
6	0.1	30	24	1.6	3	Na ₂ S ₂ O ₈ (0.05)	79	87
7	0.1	50	24	1.6	3	Na ₂ S ₂ O ₈ (0.05)	98	98
8	0.1	40	24	1.8	3	Na ₂ S ₂ O ₈ (0.05)	99	91
9	0.1	40	24	1.4	3	Na ₂ S ₂ O ₈ (0.05)	84	98
10	0.1	40	36	1.6	3	Na ₂ S ₂ O ₈ (0.05)	99	99
11	0.1	40	18	1.6	3	Na ₂ S ₂ O ₈ (0.05)	88	93
12	0.1	40	24	1.6	4	Na ₂ S ₂ O ₈ (0.05)	84	98
13	0.1	40	24	1.6	2	Na ₂ S ₂ O ₈ (0.05)	99	82

^a Reaction conditions: aniline (1 mmol), solvent (methanol). ^b Determined by GC and naphthalene as internal standard.

Table S12. Optimization of the reaction conditions for oxidation of anline to NSB over 1 in H₂O₂ system.^a

Entry	Catalvet	T/ °C	Time	H ₂ O ₂	Solvent	Additive	Conv	Sel of NSB % ^b
Linuy	Catalyst	17 0	TIME	H ₂ O ₂	Solvent	Additive	COIIV.	
	(mol%)		(h)	(equiv)	(mL)	(equiv)	%	
1	0.025	30	6	1.4	1	Na ₂ S ₂ O ₈ (0.075)	99	87
2	0.025	30	6	1.4	1	Na ₂ S ₂ O ₈ (0.05)	99	88
3	0.025	30	6	1.4	1	Na ₂ S ₂ O ₈ (0.025)	91	89
4	0.03	30	6	1.4	1	Na ₂ S ₂ O ₈ (0.05)	99	91
5	0.02	30	6	1.4	1	Na ₂ S ₂ O ₈ (0.05)	89	86
6	0.025	25	6	1.4	1	Na ₂ S ₂ O ₈ (0.05)	81	89
7	0.025	40	6	1.4	1	Na ₂ S ₂ O ₈ (0.05)	99	73
8	0.025	30	6	1.6	1	Na ₂ S ₂ O ₈ (0.05)	99	73
9	0.025	30	6	1.2	1	Na ₂ S ₂ O ₈ (0.05)	72	89
10	0.025	30	8	1.4	1	Na ₂ S ₂ O ₈ (0.05)	99	63
11	0.025	30	4	1.4	1	Na ₂ S ₂ O ₈ (0.05)	83	70
12	0.025	30	6	1.4	2	Na ₂ S ₂ O ₈ (0.05)	67	51
13	0.025	30	6	1.4	0.5	Na ₂ S ₂ O ₈ (0.05)	98	43

^a Reaction conditions: aniline (1 mmol), solvent (toluene). ^b Determined by GC and naphthalene as internal standard.

Table S13. Optimization of the reaction conditions for oxidation of anline to NB over 1 in H₂O₂ system.^a

Entry (Catalyst	T/ 90	Time		Colvert	Additive (equiv)	Conv	Sal of NB 9/h
Entry	Catalyst	1/ 0	rime	$\Pi_2 U_2$	Solvent	Additive (equiv)	CONV.	
	(mol%)		(h)	(equiv)	(mL)		%	
1	0.05	40	2	5.0	1	K ₂ CO ₃ (0.075)	99	99
2	0.05	40	2	5.0	1	K ₂ CO ₃ (0.05)	99	99
3	0.05	40	2	5.0	1	K ₂ CO ₃ (0.025)	92	93
4	0.06	40	2	5.0	1	K ₂ CO ₃ (0.05)	99	99
5	0.03	40	2	5.0	1	K ₂ CO ₃ (0.05)	91	96
6	0.05	30	2	5.0	1	K ₂ CO ₃ (0.05)	74	89
7	0.05	50	2	5.0	1	K ₂ CO ₃ (0.05)	99	99
8	0.05	40	2	6.0	1	K ₂ CO ₃ (0.05)	99	97
9	0.05	40	2	4.0	1	K ₂ CO ₃ (0.05)	92	93
10	0.05	40	3	5.0	1	K ₂ CO ₃ (0.05)	99	99
11	0.05	40	1	5.0	1	K ₂ CO ₃ (0.05)	86	94
12	0.05	40	2	5.0	2	K ₂ CO ₃ (0.05)	84	89
13	0.05	40	2	5.0	0.5	K ₂ CO ₃ (0.05)	99	83

^a Reaction conditions: aniline (1 mmol), solvent (methanol). ^b Determined by GC and naphthalene as internal standard.

Table S14 The catal	vtic results of anilines	oxidation reaction in	n Methanol-Na ₂ HAsO	system using	n different cataly	ists a
	ylic results of armines				a unior one oatary	313.

					0		
Eentry	Catalyst	Conv. %	Sel of AOB % ^b	Sel. of AB % ^b	Sel. of NSB % ^b	Sel. of NB % ^b	
1	none	0	0	0	0	0	
2	Na ₂ WO ₄	18	58	42	0	0	
3	Sb ₂ O ₃	0	0	0	0	0	
4	RuCl ₃	0	0	0	0	0	
5	1	99	96	2	2	0	
6	1-HT	92	95	1	1	0	
7	2	87	91	9	0	0	
8	3	49	85	15	0	0	
9	3-HT	50	84	16	0	0	

^a Catalyst (0.1 mol%), **2a** (1.0 mmol), methanol (1.0 mL), 30% H₂O₂ (2.0 equiv), Na₂S₂O₈ (0.05 equiv), 40 °C, 12 h. ^b Determined by GC and naphthalene as internal standard.

Table S15. The catalytic results of anilines oxidation reaction in Methanol-Na₂S₂O₈ system using different catalysts.^a

Eentry	Catalyst	Conv. %	Sel of AOB % ^b	Sel. of AB % ^b	Sel. of NSB % ^b	Sel. of NB % ^b
1	none	0	0	0	0	0
2	Na ₂ WO ₄	29	23	77	0	0
3	Sb_2O_3	0	0	0	0	0
4	RuCl₃	0	0	0	0	0
5	1	99	0	98	2	0
6	1-HT	92	3	95	2	0
7	2	90	7	93	0	0
8	3	56	6	94	2	0
9	3-HT	57	18	82	0	0

^a Catalyst (0.1 mol%), **2a** (1.0 mmol), methanol (3.0 mL), 30% H₂O₂ (1.5 equiv), Na₂S₂O₈ (0.05 equiv), 40 °C, 24 h. ^b Determined by GC and naphthalene as internal standard.

Table S16. The catalytic results of anilines oxidation reaction in	Toluene-Na ₂ S ₂ O	8 system using	different catalysts. ^a
--	--	----------------	-----------------------------------

Eentry	Catalyst	Conv. %	Sel of AOB % ^b	Sel. of AB % ^b	Sel. of NSB % ^b	Sel. of NB % ^b
1	none	0	0	0	0	0
2	Na ₂ WO ₄	24	11	38	51	0
3	Sb ₂ O ₃	0	0	0	0	0
4	RuCl ₃	0	0	0	0	0
5	1	99	0	12	88	0
6	1-HT	93	12	13	75	0
7	2	94	9	9	82	0
8	3	44	32	14	54	0
9	3-HT	44	30	11	59	0

^a Catalyst (0.025 mol%), **2a** (1.0 mmol), Toluene (1.0 mL), 30% H₂O₂ (1.5 equiv), Na₂S₂O₈ (0.05 equiv), 30 °C, 1 h. ^b Determined by GC and naphthalene as internal standard.

Table S17. The catalytic results of anilines oxidation reaction in Methanol-K ₂ CO ₃ system using different	catalysts. ^a
---	-------------------------

Eentry	Catalyst	Conv. %	Sel of AOB % ^b	Sel. of AB % ^b	Sel. of NSB % ^b	Sel. of NB % ^b
1	none	0	0	0	0	0
2	Na ₂ WO ₄	26	6	42	0	53
3	Sb_2O_3	0	0	0	0	0
4	RuCl ₃	0	0	0	0	0
5	1	99	0	0	0	99
6	1-HT	92	0	0	0	99
7	2	92	0	0	0	99
8	3	36	16	33	4	47
9	3-HT	37	19	31	4	46

^a Catalyst (0.05 mol%), **2a** (1.0 mmol), methanol (1.0 mL), 30% H₂O₂ (5.0 equiv), K₂CO₃ (0.05 equiv), 40 °C, 2 h. ^b Determined by GC and naphthalene as internal standard.

Table S18. Experiments on investigating the reaction mechanism over 1 in H₂O₂ system.

Entry	Substrate	Solvent/mL	H_2O_2	Additive	Conv%	Sel. of	Sel. of	Sel. of	Sel. of
,			Equiv.			AOB %ª	AB %ª	NSB %ª	NB %ª
1 ^b	Ph-NH ₂ +BHT	CH ₃ OH/1 mL	2.0	NaHAsO ₄	99	96	0	4	0
2 ^c	Ph-NH ₂ +BHT	CH ₃ OH/3 mL	1.6	$Na_2S_2O_8$	99	1	97	2	0
3 ^d	Ph-NH ₂ +BHT	Toulene/1 mL	1.4	$Na_2S_2O_8$	95	16	3	81	0
4 ^e	Ph-NH ₂ +BHT	CH₃OH/1 mL	5.0	K ₂ CO ₃	99	2	0	0	98
5 ^{<i>f</i>}	Ph-NHOH	CH₃OH/1 mL	2.0	no	99	98	0	2	0
6 ^g	Ph-NHOH	CH ₃ OH/3 mL	1.6	$Na_2S_2O_8$	86	0	0	99	0
7 ^{<i>h</i>}	Ph-NHOH	CH ₃ OH/3 mL	1.6	no	43	90	2	8	0
8 ^{<i>i</i>}	Ph-NHOH	Toulene/1 mL	1.4	$Na_2S_2O_8$	99	18	0	82	0
9 ^j	Ph-NHOH	Toulene/1 mL	1.4	no	46	16	1	83	0
10 ^{<i>k</i>}	Ph-NHOH	CH₃OH/1 mL	5.0	K ₂ CO ₃	99	2	0	1	97
11′	Ph-NHOH+Ph-NO	CH ₃ OH/1 mL	0	no	99	99	0	1	0
12 ^m	Ph-NHOH+Ph-NO	CH ₃ OH/3 mL	0	$Na_2S_2O_8$	36	3	1	96	0
13 ⁿ	Ph-NHOH+Ph-NO	CH ₃ OH/3 mL	0	no	99	99	0	1	0
14°	Ph-NHOH+Ph-NO	Toulene/1 mL	0	$Na_2S_2O_8$	21	20	2	78	0
15 ^p	Ph-NHOH+Ph-NO	CH₃OH/1 mL	0	K_2CO_3	25	80	3	17	0
16 ⁹	Ph-NH ₂ +Ph-NO	CH₃OH/1 mL	0	NaHAsO ₄	33	0	78	22	0
17 ^r	Ph-NH ₂ +Ph-NO	CH ₃ OH/3 mL	0	$Na_2S_2O_8$	99	1	96	2	0
18 ^s	Ph-NH ₂ +Ph-NO	Toulene/1 mL	0	$Na_2S_2O_8$	15	0	77	23	0
19 ^t	Ph-NH ₂ +Ph-NO	CH₃OH/1 mL	0	K_2CO_3	22	0	89	11	0
20 ^{<i>u</i>}	Ph-NH ₂ +Ph-NO	CH₃OH/1 mL	0	no	97	0	91	9	0
21 ^v	Ph-NO	CH₃OH/1 mL	2.0	K ₂ CO ₃	99	0	0	0	99
22 ^w	Ph-NO	CH₃OH/1 mL	2.0	no	99	0	0	0	99

^a Determined by GC and naphthalene as internal standard. ^b Reaction conditions: Ph-NH₂ (1 mmol), BHT (1.2 mmol), catalyst (0.1 mol% based on Ph-NH₂), additive (0.05 equiv.), 40°C, 12 h. c Reaction conditions: Ph-NH₂ (1 mmol), BHT (1.2 mmol), catalyst (0.1 mol% based on Ph-NH₂), additive (0.05 equiv.), 40°C, 24 h. ^d Reaction conditions: Ph-NH₂ (1 mmol), BHT (1.2 mmol), catalyst (0.025 mol% based on Ph-NH₂), additive (0.05 equiv.), 30°C, 1 h. e Reaction conditions: Ph-NH₂ (1 mmol), BHT (1.2 mmol), catalyst (0.05 mol% based on Ph-NH₂), additive (0.05 equiv.), 40°C, 2 h. f Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.1 mol% based on Ph-NHOH), 40°C, 30 min. g Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.1 mol% based on Ph-NHOH), additive (0.5 equiv.), 40°C, 24 h. h Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.1 mol% based on Ph-NHOH), 40°C, 24 h. ^{*i*} Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.025 mol% based on Ph-NHOH), additive (0.05 equiv.), 30°C, 1 h.[/] Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.025 mol% based on Ph-NHOH), 30°C, 1 h. ^k Reaction conditions: Ph-NHOH (1 mmol), catalyst (0.05 mol% based on Ph-NHOH), additive (0.05 equiv.), 40°C, 2 h. / Reaction conditions: Ph-NHOH (0.5 mmol), Ph-NO (0.5 mmol), catalyst (0.1 mol% based on Ph-NHOH+Ph-NO), 40°C, 30 min. ^m Reaction conditions: Ph-NHOH (0.5 mmol), Ph-NO (0.5 mmol), catalyst (0.1 mol% based on Ph-NHOH+Ph-NO), additive (0.05 equiv.), 40°C, 24 h. " Reaction conditions: Ph-NHOH (0.5 mmol), Ph-NO (0.5 mmol), catalyst (0.1 mol% based on Ph-NHOH+Ph-NO), 40°C, 30 min. • Reaction conditions: Ph-NHOH (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.025 mol% based on Ph-NHOH+Ph-NO), 30°C, 1 h. P Reaction conditions; Ph-NHOH (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.05 mol% based on Ph-NHOH+Ph-NO), 40°C, 2 h. 9 Reaction conditions: Ph-NH₂ (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.1 mol% based on Ph-NH₂+Ph-NO), 40°C, 12 h. ⁷Reaction conditions: Ph-NH₂ (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.1 mol% based on Ph-NH2+Ph-NO), 40°C, 30 min. * Reaction conditions: aniline (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.025 mol% based on Ph-NH₂+Ph-NO) 30°C, 1 h. ^t Reaction conditions: Ph-NH₂ (0.5 mmol), Ph-NO (0.5 mmol), additive (0.05 equiv.), catalyst (0.05 mol% based on Ph-NH₂+Ph-NO), 40°C, 2 h. ^a Reaction conditions: Ph-NH₂ (0.5 mmol), Ph-NO (0.5 mmol), catalyst (0.05 mol% based on Ph-NH₂+Ph-NO), 40°C, 2 h. ^v Reaction conditions: Ph-NO (1 mmol), additive (0.05 equiv.), catalyst (0.05 mol% based on Ph-NO), 40°C, 30 min. * Reaction conditions: Ph-NO (1 mmol), (0.05 mol% based on Ph-NO), 40°C, 30 min.

Table S19. Photocatalytic activity with different catalysts and control experiment.^a

Entry	Catalyst	t(h)	Conv. % ^c	Sel. % ^c
1	1	4	99	99
2	2	6	99	99
3	3	6	43	99
4	Na ₂ WO ₄	6	24	99
5	Sb ₂ O ₃	6	24	99
6	RuCl ₃	6	31	99
7	RuCl₃/ 3	6	40	99
8	1 ^{<i>b</i>}	6	trace	trace
9	None	6	trace	trace

^a Reaction conditions: substrate (0.5 mmol), catalyst (0.05 mol%), methanol (0.5 mL), N₂H₄·H₂O (2 mmol), 10 W LED lamp, rt. ^b Dark. ^c Determined by GC and naphthalene as internal standard.

Table S20. Photocatalytic activity of photocatalyst 1 with different solvents.^a

	•		
Entry	Solvent	Conv. % ^b	Sel. % ^b
1	CH ₃ CN	45	98
2	CH ₃ CH ₂ OH	56	99
3	CH ₂ CI	57	99
4	DMF	58	99
5	Toluene	46	99
6	Hexane	75	99
7	CH₃OH	99	99

^a Reaction conditions: substrate (0.5 mmol), catalyst (0.05 mol%), solvent (0.5 mL), N₂H₄·H₂O (2 mmol), 10 W LED lamp, rt. ^b Determined by GC and naphthalene as internal standard.

Table S21. Photocatalytic activity of photocatalyst 1 with different substrates for reaction pathway study.^a

Entry	Substrate	t(h)	Conv. %°	Sel. % ^e
1	Nitrobenzene	4	99	99
2	Nitrosobenzene	1	99	99
3	Hydroxylamine	0.5	99	99
4	Azobenzene	4	0	0
5	Azoxybenzene	4	25	0
6	Nitrobenzene+CCl ₄ ^b	4	11	99
7	Nitrobenzene ^c	4	0	0
8	Nitrobenzene+BHT ^d	4	99	99

^a Reaction conditions: substrate (0.5 mmol), catalyst (0.05 mol%), methanol (0.5 mL), N₂H₄·H₂O (2 mmol), 10 W LED lamp, rt. ^b CCl₄ (0.5 mmol). ^c H₂ (2 atm) replace N₂H₄·H₂O. ^d BHT (0.6 mmol). ^e Determined by GC and naphthalene as internal standard.

Table 322. The summary of animile oxidation reaction.										
Catalyst	Solvent	Oxidizing	l t		Conversio		Y16	eld	1	Ref
		agent			n	AB	AOB	NSB	NB	
					(%)					
Material catalyst	S		r	1			r	1	r	
Au/TiO ₂	toluene	O ₂ (5	22 h	100 °C	100	98	0.5	1.5		5
		bars)								
Ti superoxide	MeOH	H_2O_2	0.5 h	25 °C	100			1.82	98.1	6
									8	
CuBr	toluene	air	20 h	60 °C	n.p	96				7
Meso-Mn ₂ O ₃	toluene	air	8 h	110 °C	99	99				8
Naul -Ini	C₂H₄Cl₂	H ₂ O ₂	9 h	RT	100		100			9
	toluono	0 /5	10 h	100 °C	100	03				10
	loidene	$O_2(J)$		100 0	100	93				
	MaCN	Dais)	16 h	05.00		04				11
	ween	air		05 0	n.p	94				
	DMCO	-in (4	04 5	<u> </u>		07				10
Ag/C-KOH	DIVISO	air (1	24 n	60 C	n.p	97				12
A .: /\A/O		atm)	04.1	05 00	07		70			10
Ag/WO ₃	CH ₃ CN		24 n	25 0	8/		79			13
Nb ₂ O ₅ /FeOOH	propanol	H_2O_2	24 h	25 °C	100		70			14
Zr(OH) ₄	methanol	H_2O_2	2 h	25 °C	98		96	3		15
Zr(OH) ₄	acetic	TBHP	24 h	40 °C	96	90	3	1		15
	acid									
Zr(OH) ₄	mesityle	H_2O_2	4 h	25 °C	96	0	12	84		15
	ne									
WO _x MCN _x	CH₃CN	H_2O_2	12 h	90 °C	89.7	71.3	13	6.3		16
CuCr ₂ O ₄	1,4-	H_2O_2	10 h	70 °C	78		71.8			17
	dioxane									
AuPd@C	DMSO	02	12 h	25 °C	55	54				18
CuCl	CH ₃ CN	air	48 h	25 °C	n.p	33				19
Ad ₁ Ni _v	DMSO	air	24 h	0° 00	94.4	94				20
POM catalysts	2				0	•	I			
Moo	methanol	HaQa	24 h	60 °C	99	99				21
Mo	MTRE	H ₂ O ₂	24 h	50 °C	99		93			21
		H O	/8 h	25 °C	 		0/			22
			40 H	20 C	n.p		05			22
	CI I3OIT		4011	40 °C	00		95			ZJ Thio
1	memanor	$\Pi_2 U_2$	12	40 C	99		97			Inis
-				10.00						WORK
1	methanol	H_2O_2	24	40°C	99	98				Inis
										WORK
1	toluene	H_2O_2	1	60 °C	99			88		This
										work
1	methanol	H ₂ O ₂	2	60 °C	99				99	This
										work

Table S22. The summary of aniline oxidation reaction

Note: n.p = not provided

Table S23. Summary of the yield of the reduction of nitrobenzene with different catalysts.

Catalyst	T/°C	Light source	Hydrogen source	t/h	Yield/%	Ref.				
Material catalysts	Material catalysts									
Pd-Au NRs	25	λ> 320nm	HCOOH/HCOONa	5	>99	24				
PbBiO₂Br	RT	440 nm	TEOA	6	>99	25				
Cu-CoFe ₂ O ₄	RT	Visible light	H₂O	1.5	99	26				
Ag-rGO/g-C ₃ N ₄	RT	λ> 400 nm	methanol	4	98	27				
EY	RT	LED (525 nm)	TEOA	24	>99	28				
3.0 wt% CQDs/ZnIn ₂ S ₄	/	LED irradiation	TEOA/MeOH (1:1)	16	>99	29				
Co@CN/SiO ₂ -500	70	1	N_2H_4 · H_2O	1.2	>99.5	30				
Pd/C	80	1	$N_2H_4 \cdot H_2O$	4	100	31				
MMC-Fe ₂ O ₃	80	1	$N_2H_4 \cdot H_2O$	2	100	32				
Rh-Fe ₂ O ₃	80	1	N_2H_4 · H_2O	1	99	33				
NC-90	90	1	$N_2H_4 \cdot H_2O$	1	100	34				
Zr ₁₂ -TPDC-Co	110	1	NaBEt ₃ H/H ₂	72	100	35				
POM catalysts										
ZnW-TPT	RT	LED irradiation	$N_2H_4 \cdot H_2O$	6	99	36				
Rh-POM	RT	10 W LED lamp	N ₂ H ₄ •H ₂ O	6	96	23				
CoW-TPT	RT	365 nm	TEOA	12	95	37				
1	RT	Visible light	N ₂ H ₄ •H ₂ O	6	97	This work				

NMR data of products

Aniline (2a) ¹H NMR (500 MHz, CDCl₃) δ 7.06 (t, *J*=8.36 Hz, 2H), 6.67 (t, *J*=7.36 Hz, 1H), 6.55–6.52 (dd, *J*=1.04, 0.92 Hz, 2H), 3.47 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.73, 129.48, 118.60, 115.29 ppm.

4-chloroaniline (2b) ¹H NMR (500 MHz, CDCl₃) δ 7.12 (d, *J*=8.72 Hz, 2H), 6.60 (d, *J*=8.72 Hz, 2H), 3.64 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.13, 129.15, 123.02, 116.31 ppm.

4-bromoaniline (2c) ¹H NMR (500 MHz, CDCl₃) δ 7.29 (d, *J*=8.55 Hz, 2H), 6.62 (d, *J*=8.70 Hz, 2H), 3.64 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 145.46, 132.04, 116.74, 110.21 ppm.

4-fluoroaniline (2d) ¹H NMR (500 MHz, CDCl₃) δ 6.93 (t, *J*=8.73 Hz, 2H), 6.67 (dd, *J*=4.5, 4.5 Hz, 2H), 3.60 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 157.96, 154.85, 142.71, 115.84 ppm.

3-fluoroaniline (2e) ¹H NMR (500 MHz, CDCl₃) δ 7.14 (t, *J*=7.98 Hz, 1H), 6.83 (d, *J*=7.98 Hz, 1H), 6.71 (t, *J*=2.07 Hz, 1H), 6.61 (dd, *J*=2.16, 1.5 Hz, 1H), 3.76 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.89, 134.83, 130.49, 118.43, 114.99, 113.38 ppm.

2-fluoroaniline (2f) ¹H NMR (500 MHz, CDCl₃) δ 7.13–7.01 (m, 2H), 6.87–6.76 (m, 2H), 3.79 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 153.43, 150.27, 134.78, 134.61, 124.60, 118.73, 117.11, 115.43, 115.18 ppm.

4-ethylaniline (2g) ¹H NMR (500 MHz, CDCl₃) δ 7.19 (d, *J*=8.1 Hz, 2H), 6.79 (d, *J*=8.31 Hz, 2H), 3.65 (s, 2H), 2.78 (dd, *J*=7.56, 7.59 Hz, 2H), 1.42 (t, *J*=7.56 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.37, 134.45, 128.75, 115.45, 28.19, 16.17 ppm.

4-methoxyaniline (2h) ¹H NMR (500 MHz, CDCl₃) δ 6.82 (d, *J*=8.85 Hz, 2H), 6.71 (d, *J*=8.85 Hz, 2H), 3.79 (s, 3H), 3.42 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 152.83, 140.02, 116.48, 114.86, 55.78 ppm.

 NH_2

2-methoxyaniline (2i) ¹H NMR (500 MHz, CDCl₃) δ 6.94–6.82 (m, 4H), 3.95 (s, 3H), 3.89 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.45, 136.44, 121.25, 118.49, 115.14, 110.63, 55.52 ppm.

p-toluidine (2j) ¹H NMR (500 MHz, CDCl₃) δ 7.13 (d, *J*=8.07 Hz, 2H), 6.74 (d, *J*=8.28 Hz, 2H), 3.61 (s, 2H), 2.40 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.08, 129.89, 127.76, 115.40, 20.60 ppm.

m-toluidine (2k) ¹H NMR (500 MHz, CDCl₃) δ 7.22 (t, *J*=7.71 Hz, 1H), 6.78 (d, *J*=7.59 Hz, 1H), 6.65 (d, *J*=6.42 Hz, 2H), 3.70 (s, 2H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 146.66, 139.21, 129.32, 119.52, 116.09, 112.43, 21.60 ppm.

o-toluidine (2I) ¹H NMR (500 MHz, CDCl₃) δ 7.26 (t, *J*=7.32 Hz, 2H), 6.94 (t, *J*=7.35 Hz, 1H), 6.85 (d, *J*=7.86 Hz, 1H), 3.71 (s, 2H), 2.35 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.90, 130.65, 127.18, 122.49, 118.75, 115.14, 17.52 ppm.

(Z)-Diphenyldiazene N-oxide (3a) ¹H NMR (500 MHz, CDCl₃) δ 8.34 (d, *J*=8.7 Hz, 2H), 8.22 (d, *J*=8.3 Hz, 2H), 7.56–7.41 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 148.26, 143.94, 131.50, 129.54, 128.71, 125.47, 122.27 ppm.

(Z)-1,2-Di-*p*-tolyldiazene 1-oxide (3b). ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 8.25 Hz, 2H), 8.14 (d, *J* = 7.1 Hz, 2H), 7.30 (d, *J* = 8.4 Hz, 4H), 2.44 (d, *J* = 11.0 Hz, 6H). 13C NMR (126 MHz, CDCl₃) δ 146.21, 141.87, 139.95, 129.25, 125.61, 122.10, 21.50, 21.24 ppm.

(Z)-1,2-Di-*m*-tolyldiazene 1-oxide (3c). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (t, *J* = 15.2 Hz, 2H), 8.00 (d, *J*=8.35 Hz, 2H), 7.39 (t, *J* = 19.85 Hz, 3H), 7.23 (d, *J* = 7.1 Hz, 1H), 2.48 (s, 3H), 2.44 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.40, 144.03, 138.95, 138.42, 132.25, 130.33, 128.56, 128.47, 125.98, 122.76, 122.48, 119.48, 21.45, 21.37 ppm.

(*Z*)-1,2-Bis(2-methylphenyl)diazene 1-oxide (3d). ¹H NMR (500 MHz, CDCl₃) δ 8.10 (d, *J* = 7.75 Hz, 1H), 7.94 (d, *J* = 8.65 Hz, 1H), 7.70 (d, *J* = 7.75 Hz, 1H), 7.38–7.30 (m, 5H), 2.53 (s, 3H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 142.79, 134.10, 131.77, 130.77, 130.00, 128.56, 126.58, 126.04, 125.66, 123.58, 121.53, 18.42, 17.22 ppm.

(Z)-1,2-bis(4-ethylphenyl)diazene 1-oxide (3e) ¹H NMR (500 MHz, CDCl₃) δ 8.22 (d, *J* = 8.7 Hz, 2H), 8.15 (d, *J* = 8.5 Hz, 2H), 7.32 (d, *J* = 8.2 Hz, 4H), 2.71–2.75 (m, 4H), 1.30–1.27 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 148.14, 146.21, 142.05, 128.06, 125.71, 122.25, 28.61, 15.28 ppm.

(Z)-1,2-bis(4-butylphenyl)diazene 1-oxide (3f) ¹H NMR (500 MHz, CDCl₃) δ 8.21 (d, J = 8.5 Hz, 2H), 8.15 (d, J = 12.6 Hz, 2H), 7.30 (d, J = 8.6 Hz, 4H), 2.72–2.66 (m, 4H), 1.65 (t, J = 5.9 Hz, 4H), 1.39 (d, J = 7.6 Hz, 4H), 0.95 (t, J = 7.4 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 146.84, 144.94, 142.01, 128.60, 125.62, 122.15, 35.59, 33.30, 22.23, 13.89 ppm.

(Z)-1,2-bis(4-isopropylphenyl)diazene 1-oxide (3g) ¹H NMR (500 MHz, CDCl₃) δ 8.22–8.20 (d, *J* = 8.75 Hz, 2H), 8.15–8.14 (d, *J* = 8.6 Hz, 2H), 7.34 (m, 4H), 3.01 (m, 2H), 1.29 (m, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.73, 149.77, 145.43, 141.13, 125.71, 124.71, 121.28, 32.98, 22.78 ppm.

(Z)-1,2-bis(4-tert-butylphenyl)diazene 1-oxide (3h) ¹H NMR (500 MHz, CDCl₃) δ 8.23 (d, *J* = 8.95 Hz, 2H), 8.16 (d, *J* = 8.85 Hz, 2H), 7.52–7.50 (m, 4H), 1.38 (d, *J* = 2.8 Hz, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 155.00, 152.96, 146.06, 141.75, 125.53, 121.95, 34.94, 31.17 ppm.

(Z)-1,2-bis(3-methoxyphenyl)diazene 1-oxide (3i) ¹H NMR (500 MHz, CDCl₃) δ 8.28 (dd, *J* = 9.25, 9.2 Hz, 4H), 6.92 (dd, *J* = 9.2, 9.2 Hz, 4H), 4.08 (dd, *J* = 4.25, 4.25 Hz, 4H), 1.44 (dd, *J* = 7.0, 7.0 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.18, 159.55, 141.48, 137.82, 127.75, 123.66, 114.13, 63.63, 14.70 ppm.

(Z)-1,2-bis(3-methoxyphenyl)diazene 1-oxide (3j) ¹H NMR (500 MHz, CDCl₃) δ 7.90 (d, *J* =8.15 Hz, 1H), 7.84 (t, *J* =2.3 Hz, 1H), 7.80 (t, *J* =2.05 Hz, 1H), 7.74 (d, *J* =7.95 Hz, 1H), 7.42 (dd, *J* =8.2, 8.15 Hz, 2H), 7.12 (d, *J* =11.35 Hz, 1H),6.98 (d, *J* =10.85 Hz, 1H), 3.91 (d, *J* =16.75 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 159.95, 149.56, 145.05, 129.49, 118.40, 116.32, 114.69, 110.06, 107.55, 55.45 ppm.

(Z)-1,2-bis(4-fluorophenyl)diazene 1-oxide (3k) ¹H NMR (500 MHz, CDCl₃) δ 8.30 (dd, *J* = 4.8, 4.8 Hz, 2H), 7.26 (dd, *J* = 5.35, 5.35 Hz, 2H), 7.20–7.15 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 162.48, 143.24, 139.25, 127.00, 123.55, 114.78, 114.55 ppm.

(Z)-1,2-bis(3-fluorophenyl)diazene 1-oxide (3I) ¹H NMR (500 MHz, CDCl₃) δ 8.13 (dd, *J* = 1.55, 1.55 Hz, 1H), 8.08–8.03 (m, 2H), 7.86 (d, *J* = 8.15 Hz, 1H), 7.50–7.45 (m, 2H), 7.31–7.28 (m, 1H), 7.15–7.11 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.42, 161.40, 149.31, 144.83, 130.07, 129.72, 122.10, 119.08, 118.13, 116.76, 112.14, 110.20 ppm.

(E)-1,2-Diphenyldiazene (4a) ¹H NMR (500 MHz, CDCl₃) δ 8.05 (d, *J* = 8.35 Hz, 4H), 7.60–7.53 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.79, 131.10, 129.20, 123.01 ppm.

(E)-1,2-Di-p-tolyldiazene (4b) ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.3 Hz, 4H), 7.31 (d, *J* = 8.05 Hz, 4H), 2.43 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 150.83, 141.19, 129.69, 122.71, 21.47 ppm.

(E)-1,2-Di-m-tolyldiazene (4c) ¹H NMR (500 MHz, CDCl₃) δ 7.73 (s, 4H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.30 (d, *J* = 7.5 Hz, 2H), 2.47 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 152.83, 138.98, 131.70, 128.91, 122.88, 120.48, 21.38 ppm.

(E)-1,2-Di-o-tolyldiazene (4d) ¹H NMR (500 MHz, CDCl₃) δ 7.64 (d, *J* = 7.9 Hz, 2H), 7.37 (d, *J* = 7.35 Hz, 4H), 7.29 (d, *J* = 11.7 Hz, 2H), 2.75 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 151.10, 137.99, 131.25, 130.66, 126.35, 115.84, 17.60 ppm.

(E)-1,2-bis(4-ethylphenyl)diazene (4e) ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 4H), 7.39 (d, *J* = 8.1 Hz, 4H), 2.78 (d, *J* = 7.65 Hz, 4H), 1.33 (t, *J* = 7.6 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 151.14, 147.50, 128.57, 122.91, 28.89, 15.50 ppm.

(E)-1,2-bis(4-butylphenyl)diazene (4f) ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.35 Hz, 4H), 7.32 (d, *J* = 8.4 Hz, 4H), 2.69 (t, *J* = 7.65 Hz, 4H), 1.68–1.62 (m, 4H), 1.41–1.36 (m, 4H), 0.95 (t, *J* = 7.35 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 151.04, 146.17, 129.05, 122.69, 35.56, 33.45, 22.33, 13.93 ppm.

(E)-1,2-bis(4-isopropylphenyl)diazene (4g) ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.4 Hz, 4H), 7.38 (d, *J* = 8.3 Hz, 4H), 1.31 (d, *J* = 6.95 Hz, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 151.99, 151.17, 127.05, 122.78, 34.12, 23.86 ppm.

(E)-1,2-bis(4-tert-butylphenyl)diazene (4h) ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.65 Hz, 4H), 7.54 (d, *J* = 8.65 Hz, 4H), 1.38 (s, 18H). ¹³C NMR (126 MHz, CDCl₃) δ 154.22, 150.76, 125.96, 122.43, 34.97, 31.28 ppm.

(E)-1,2-bis(4-methoxyphenyl)diazene (4i) ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.95 Hz, 4H), 7.01 (d, *J* = 8.95 Hz, 4H), 3.89 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 161.57, 147.11, 124.35, 114.17, 55.57 ppm.

(E)-1,2-bis(4-ethoxyphenyl)diazene (4j) ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 9 Hz, 4H), 7.00 (d, *J* = 9 Hz, 4H), 4.13 (dd, *J* = 7, 6.95 Hz, 4H), 1.45 (t, *J* = 7 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 160.97, 147.00, 124.32, 114.65, 63.78, 14.80 ppm.

(E)-1,2-bis(4-bromophenyl)diazene (4k) ¹H NMR (500 MHz, CDCl₃) δ 7.80 (d, *J* = 8.7 Hz, 4H), 7.66 (d, *J* = 8.75 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 151.15, 132.40, 124.41 ppm.

(E)-1,2-bis(4-fluorophenyl)diazene (4I) ¹H NMR (500 MHz, CDCl₃) δ 7.94–7.91 (m, 4H), 7.21–7.18 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 165.36, 148.96, 124.75, 116.08 ppm.

(E)-1,2-bis(3-fluorophenyl)diazene (4m) ¹H NMR (500 MHz, CDCl₃) δ 7.78 (dt, *J* = 1.7, 1 Hz, 2H), 7.62 (dt, *J* = 4.35, 4.35 Hz, 2H), 7.53 (dt, *J* = 8.1, 8.05 Hz, 2H), 7.21–7.19 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 162.29, 153.76, 130.30, 120.79, 118.29, 108.23 ppm.

(E)-1,2-bis(2-fluorophenyl)phenyl (4n) ¹H NMR (500 MHz, CDCl₃) δ 7.85 (t, *J* = 6.15 Hz, 2H), 7.55–7.50 (m, 2H), 7.34–7.28 (m, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 161.39, 159.34, 140.83, 133.02, 124.34, 117.90 ppm.

(E)-1,2-bis(4-chlorophenyl)diazene (4o) ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 8.7 Hz, 4H), 7.50 (d, *J* = 8.7 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 150.80, 137.23, 129.40, 124.18 ppm.

(E)-1-(4-methylphenyl)-2-phenyldiazene (4p) ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, *J* = 11.25 Hz, 2H), 7.84 (t, *J* = 11.15 Hz, 2H), 7.54–7.51 (m, 3H), 7.33 (t, *J* = 6 Hz, 2H), 2.46 (d, *J* = 3.7 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.73, 150.83, 141.16, 130.66, 129.68, 129.02, 122.84, 122.70, 21.45 ppm.

(E)-1-(3-methylphenyl)-2-phenyldiazene (4q) ¹H NMR (500 MHz, CDCl₃) δ 7.93 (t, *J* = 5.85 Hz, 2H), 7.73 (d, *J* = 5.55 Hz, 2H), 7.53–7.51 (m, 2H), 7.48–7.40 (m, 2H), 2.47 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.74, 139.00, 131.69, 130.99, 129.10, 122.86, 120.47, 21.38 ppm.

(E)-1-(4-fluorophenyl)-2-phenyldiazene (4r) ¹H NMR (500 MHz, CDCl₃) δ 7.97–7.91 (m, 4H), 7.53–7.48 (m, 3H), 7.22–7.19 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.34, 151.45, 148.12, 130.00, 128.07, 123.79, 121.78, 114.91 ppm.

Nitrosobenzene (5a) ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 2H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.52 (d, *J* = 2.9 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.77, 134.54, 128.21, 119.76 ppm.

4-MethyInitrosobenzene (5b) ¹H NMR (500 MHz, CDCl₃) δ 8.20 (dd, *J* = 8.6, 8.45 Hz, 2H), 7.29 (d, *J* = 8.25 Hz, 2H), 2.44 (d, *J* = 13.25 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.56, 146.23, 129.28, 122.13, 21.52 ppm.

3-Methylnitrosobenzene (5c) ¹H NMR (500 MHz, CDCl₃) δ 8.11–7.96 (m, 1H), 7.78 (d, *J* = 7.25 Hz, 1H), 7.64–7.52 (m, 1H), 7.50–7.36 (m, 1H), 2.50 (d, *J* = 17.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.25, 139.44, 136.21, 129.08, 120.66, 119.01, 21.14 ppm.

2-Methylnitrosobenzene (5d) ¹H NMR (500 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 1H), 7.55 (d, *J* = 7.6 Hz, 1H), 7.15 (t, *J* = 7.95 Hz, 1H), 6.29 (d, *J* = 8.15 Hz, 1H), 3.35 (s, 3H),. ¹³C NMR (126 MHz, CDCl₃) δ 163.97, 141.28, 135.22, 131.91, 124.64, 106.31, 16.19 ppm.

4-ethylphenylnitrosobenzene (5e) ¹H NMR (500 MHz, CDCl₃) δ 7.84 (d, *J* = 8 Hz, 2H), 7.42 (d, *J* = 8.05 Hz, 2H), 2.76 (dd, *J* = 7.6, 7.55 Hz, 2H), 1.29 (t, *J* = 7.65 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.69, 153.14, 128.53, 121.35, 29.16, 14.84 ppm.

4-butylphenylnitrosobenzene (5f) ¹H NMR (500 MHz, CDCl₃) δ 7.83 (d, *J* = 8.2 Hz, 2H), 7.40 (d, *J* = 8.5 Hz, 2H), 2.70 (t, *J* = 7.7 Hz, 2H), 1.65 (t, *J* = 7.75 Hz, 2H), 1.38 (t, *J* = 7.45 Hz, 2H), 0.96 (d, *J* = 7.35 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.70, 152.02, 129.08, 121.31, 35.92, 32.95, 22.31, 13.84 ppm.

4-isopropylphenylnitrosobenzene (5g) ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.25 Hz, 2H), 7.46 (d, *J* = 8.35 Hz, 2H), 3.01 (t, *J* = 6.9 Hz, 1H), 1.31 (d, *J* = 6.85 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 165.78, 157.60, 127.16, 121.43, 34.56, 23.44 ppm.

4-tert-butylphenylnitrosobenzene (5h) ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 8.5 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 1.38 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 164.21, 158.76, 125.05, 119.99, 34.60, 29.94 ppm.

4-fluorophenylnitrosobenzene (5i) ¹H NMR (500 MHz, CDCl₃) δ 8.02 (dd, *J* = 5.25, 5.2 Hz, 2H), 7.33 (t, *J* = 8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.89, 162.59, 122.97, 115.25 ppm.

1-Bromo-4-nitrosobenzene (5j) ¹H NMR (500 MHz, CDCl₃) δ 7.78 (d, *J* = 1.9 Hz, 4H). ¹³C NMR (126 MHz, CDCl₃) δ 163.82, 132.69, 131.69, 122.12 ppm.

4-chlorophenylnitrosobenzene (5k) ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, *J* = 8.65 Hz, 2H), 7.60 (d, *J* = 8.8 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 163.72, 142.26, 129.66, 122.15 ppm.

3-chlorophenylnitrosobenzene (5I) ¹H NMR (500 MHz, CDCl₃) δ 8.07 (d, *J* = 7.75 Hz, 1H), 7.70 (d, *J* = 7.4 Hz, 1H), 7.65 (t, *J* = 7.9, 7.75 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 165.03, 136.02, 134.96, 130.72, 121.44, 118.72 ppm.

Nitrobenzene (6a) ¹H NMR (500 MHz, CDCl₃) δ 8.06 (d, *J* = 8.8 Hz, 2H), 7.59 (t, *J* = 7.55 Hz, 1H), 7.42 (t, *J* = 9.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.91, 134.57, 129.21, 123.09 ppm.

4-methylnitrobenzene (6b) ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 8.85 Hz, 2H), 7.18 (d, *J* = 8.8 Hz, 2H), 2.31 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 145.04, 144.96, 128.71, 122.24, 20.27 ppm.

3-methylnitrobenzene (6c) ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.85 Hz, 2H), 7.46 (d, *J* = 7.65 Hz, 1H), 7.38 (d, *J* = 8 Hz, 1H), 2.42 (d, *J* = 6.75 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 147.15, 138.75, 134.30, 128.00, 122.69, 119.52, 20.08 ppm.

2-methylnitrobenzene (6d) ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.25 Hz, 1H), 7.49 (d, *J* = 8.75 Hz, 1H), 7.33 (t, *J* = 4.95 Hz, 2H), 2.60 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 148.28, 131.95, 131.71, 125.85, 123.59, 19.34 ppm.

4-ethylphenylnitrobenzene (6e) ¹H NMR (500 MHz, CDCl₃) δ 8.08 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.85 Hz, 2H), 2.71 (d, *J* = 7.7 Hz, 2H), 1.25 (d, *J* = 7.65 Hz, 3H),. ¹³C NMR (126 MHz, CDCl₃) δ 151.02, 145.16, 127.58, 122.49, 27.77, 13.92 ppm.

4-butylphenylInitrobenzene (6f) ¹H NMR (500 MHz, CDCl₃) δ 8.21 (dd, *J* = 8.55, 8.6 Hz, 2H), 7.30 (t, *J* = 8.05 Hz, 2H), 2.71 (d, *J* = 7.55 Hz, 2H), 1.64 (d, *J* = 8.1 Hz, 2H), 1.37 (t, *J* = 7.45 Hz, 2H), 0.95 (t, *J* = 7.35 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 149.75, 145.85, 128.09, 122.48, 34.50, 32.03, 21.22, 12.79 ppm.

4-isopropylphenylnitrobenzene (6g) ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.85 Hz, 2H), 7.17 (d, *J* = 8.9 Hz, 2H), 2.81 (t, *J* = 6.95 Hz, 1H), 1.09 (t, *J* = 5.35 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 155.50, 145.13, 126.18, 122.46, 33.13, 22.37 ppm.

4-tert-butylphenylnitrobenzene (6h) ¹H NMR (500 MHz, CDCl₃) δ 7.92 (d, *J* = 8.85 Hz, 2H), 7.34 (d, *J* = 8.9 Hz, 2H), 1.19 (d, *J* = 11.7 Hz, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 157.71, 144.75, 125.12, 122.11, 34.17, 29.82 ppm.

4-methoxyphenylnitrobenzene (6i) ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 9.3 Hz, 2H), 6.93 (d, *J* = 9.3 Hz, 2H), 3.87 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.61, 140.46, 124.83, 112.99, 54.93 ppm.

3-methoxyphenylnitrobenzene (6j) ¹H NMR (500 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.72 (s, 1H), 7.42 (t, *J* = 8.25 Hz, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 160.12, 149.23, 129.88, 121.24, 115.71, 108.10, 55.79 ppm.

2-methoxyphenylnitrobenzene (6k) ¹H NMR (500 MHz, CDCl₃) δ 7.67 (d, *J* = 8.1 Hz, 1H), 7.39 (t, *J* = 8.65 Hz, 1H), 6.97 (d, *J* = 8.5 Hz, 1H), 6.87 (t, *J* = 7.2 Hz, 1H), 3.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 152.86, 139.59, 134.34, 125.44, 120.23, 113.59, 56.40 ppm.

4-ethoxyphenyInitrobenzene (6I) ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, *J* = 9.25 Hz, 2H), 6.90 (d, *J* = 9.25 Hz, 2H), 4.10 (dd, *J* = 7, 7 Hz, 2H), 1.41 (t, *J* = 7.05 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.07, 140.24, 124.81, 113.36, 63.43, 13.49 ppm.

1-Bromo-4-nitrobenzene (6m) ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 11.25 Hz, 2H), 7.70 (d, *J* = 11.25 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 147.03, 132.64, 130.00, 125.02 ppm.

4-Fluoronitrobenzene (6n) ¹H NMR (500 MHz, CDCl₃) δ 8.19 (d, *J* = 11.25 Hz, 2H), 7.52 (d, *J* = 11.25 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 146.52, 141.39, 129.60, 124.95 ppm.

 NO_2 F

3-Fluoronitrobenzene (6o) ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 10.25 Hz, 1H), 7.89–7.86 (m, 1H) , 7.57–7.52 (m, 1H) , 7.43–7.39 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.58, 149.15, 130.83, 121.79, 119.28, 111.33 ppm.

¹H NMR and ¹³C NMR spectra of spectra

¹H NMR spectra of **2a** (500 MHz, CDCl₃)

¹³C NMR spectra of **2a** (126 MHz, CDCl₃)

References

- 1 R. Wan, P. He, Z. Liu, X. Ma, P. Ma, V. Singh, C. Zhang, J. Niu and J. Wang, Chem. Eur. J., 2020, 26, 8760–8766.
- 2 U. Kortz, M. G. Savelieff, B. S. Bassil and M. H. Dickman, Angew. Chem. Int. Ed., 2001, 40, 3384–3386.
- 3 Y. Zou, H. Li, X. Zhao, J. Song, Y. Wang, P. Ma, J. Niu and J. Wang, *Dalton Trans.*, 2021, **50**, 12664–12673.
- 4 R. M. Wallace and R. C. Propst, J. Am. Chem. Soc., 1969, **91**, 3779–3785.
- 5 A. Grirrane, A. Corma and H. García, *Science*, 2008, **322**, 1661–1664.
- 6 G. K. Dewkar, M. D. Nikalje, I. Sayyed Ali, A. S. Paraskar, H. S. Jagtap and A. Sudalai, *Angew. Chem. Int. Ed.*, 2001, **40**, 405–408.
- 7 C. Zhang and N. Jiao, Angew. Chem. Int. Ed., 2010, 49, 6174–6177.
- 8 B. Dutta, S. Biswas, V. Sharma, N. O. Savage, S. P. Alpay and S. L. Suib, Angew. Chem. Int. Ed., 2016, 55, 2171–2175.
- 9 G. Trautwein, B. El Bakkali, J. Alcañiz-Monge, B. Artetxe, S. Reinoso and J. M. Gutiérrez-Zorrilla, *J. Catal.*, 2015, **331**, 110–117.
- 10 Y. Pérez, C. Aprile, A. Corma and H. Garcia, Catal. Lett., 2010, 134, 204–209.
- 11 A. Saha, S. Payra, B. Selvaratnam, S. Bhattacharya, S. Pal, R. T. Koodali and S. Banerjee, *ACS Sustainable Chem. Eng.*, 2018, **6**, 11345–11352.
- 12 S. Cai, H. Rong, X. Yu, X. Liu, D. Wang, W. He and Y. Li, *ACS Catal.*, 2013, **3**, 478–486.
- 13 S. Ghosh, S. S. Acharyya, T. Sasaki and R. Bal, Green Chem., 2015, 17, 1867–1876.
- 14 A. L. D. Lima, D. C. Batalha, H. V. Fajardo, J. L. Rodrigues, M. C. Pereira and A. C. Silva, *Catal. Today*, 2020, **344**, 118–123.
- 15 J. Qin, Y. Long, F. Sun, P. Zhou, W. D. Wang, N. Luo and J. Ma, Angew. Chem. Int. Ed., DOI:10.1002/anie.202112907.
- 16 W. Chen, H. Li, Y. Jin, C. Wu, Z. Yuan, P. Ma, J. Wang and J. Niu, *Chem. Commun.*, 2022, **58**, 9902–9905.
- 17 S. S. Acharyya, S. Ghosh and R. Bal, ACS Sustainable Chem. Eng., 2014, 2, 584–589.
- 18 F. Fu, S. He, S. Yang, C. Wang, X. Zhang, P. Li, H. Sheng and M. Zhu, Sci. China Chem., 2015, 58, 1532–1536.
- 19 W. Lu and C. Xi, Tetrahedron Letters, 2008, 49, 4011–4015.
- 20 M. Kumar, K. Soni, G. D. Yadav, S. Singh and S. Deka, Appl. Catal. A: Gen., 2016, 525, 50-58.
- 21 S. Han, Y. Cheng, S. Liu, C. Tao, A. Wang, W. Wei, H. Yu and Y. Wei, Angew. Chem. Int. Ed., 2021, 60, 6382–6385.
- 22 H. Li, M. Yang, Z. Yuan, Y. Sun, P. Ma, J. Niu and J. Wang, Chin. Chem. Lett., 2022, 33, 4664–4668.
- 23 W. Chen, H. Li, Y. Jin, C. Wu, Z. Yuan, P. Ma, J. Wang and J. Niu, *Chem. Commun.*, 2022, **58**, 9902–9905.
- 24 F. Tong, X. Liang, F. Ma, X. Bao, Z. Wang, Y. Liu, P. Wang, H. Cheng, Y. Dai, B. Huang and Z. Zheng, ACS Catal., 2021, 11, 3801–3809.
- S. Füldner, P. Pohla, H. Bartling, S. Dankesreiter, R. Stadler, M. Gruber, A. Pfitzner and B. König, *Green Chem.*, 2011, 13, 640–643.
- 26 M. M. El-Masry, M. El-Shahat, R. Ramadan and R. M. Abdelhameed, J. Mater. Sci: Mater. Electron, 2021, 32, 18408– 18424.
- 27 A. Kumar, B. Paul, R. Boukherroub and S. L. Jain, *J. Hazard. Mater.*, 2020, **387**, 121700.
- 28 X.-J. Yang, B. Chen, L.-Q. Zheng, L.-Z. Wu and C.-H. Tung, Green Chem., 2014, 16, 1082–1086.
- 29 B. Wang, Z. Deng and Z. Li, J. Catal., 2020, 389, 241–246.
- 30 Y. Xie, X. Shang, D. Liu, H. Zhao, Y. Gu, Z. Zhang and X. Wang, Appl. Catal. B Environ., 2019, 259, 118087.
- 31 Y.-M. Lu, H.-Z. Zhu, W.-G. Li, B. Hu and S.-H. Yu, J. Mater. Chem. A, 2013, 1, 3783–3788.
- 32 M. Tian, X. Cui, K. Liang, J. Ma and Z. Dong, Inorg. Chem. Front., 2016, 3, 1332–1340.
- 33 Y. Jang, S. Kim, S. W. Jun, B. H. Kim, S. Hwang, I. K. Song, B. M. Kim and T. Hyeon, *Chem. Commun.*, 2011, 47, 3601– 3603.
- 34 C. Liao, B. Liu, Q. Chi and Z. Zhang, ACS Appl. Mater. Interfaces, 2018, **10**, 44421–44429.
- 35 P. Ji, K. Manna, Z. Lin, X. Feng, A. Urban, Y. Song and W. Lin, J. Am. Chem. Soc., 2017, 139, 7004–7011.
- 36 J. Jiao, H. Sun, C. Si, J. Xu, T. Zhang and Q. Han, ACS Appl. Mater. Interfaces, 2022, 14, 16386–16393.
- 37 C. Si, F. Liu, X. Yan, J. Xu, G. Niu and Q. Han, *Inorg. Chem.*, 2022, **61**, 5335–5342.