Supporting Information

Copolymerization Synthesis of Highly Hydrophilic Carbon Nitride for Efficient Solar Hydrogen Production

Yaping Jian, Yuanyong Huang, Baodong Mao, Di Li, Bifu Luo, Min Chen, Dongbo

Xu*, Weidong Shi *

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang

212013, P.R. China.

E-mail Address: xudb39@ujs.edu.cn (D. Xu), swd1978@ujs.edu.cn (W. Shi)

Fig. S1. Diagram for the synthesis of PCN and PCNInd_x.

Fig. S2. (a) The O1s XPS analysis; (b) the C1s XPS analysis; (c) the photos of dispersion states on aqueous solutions for PCN after sonication of 30 min and PCNInd_{0.15} after sonication of 5 min until standing for 1 min and 5 min later, respectively; (d) the XRD patterns; (e) the enlarged XRD spectra of the as-prepared samples; (f) FT-IR spectra.

Fig. S3. SEM of PCN (a and b) and $PCNInd_{0.15}$ (c and d).

Fig. S4. (a and b) Typical AFM image and its height curve determined along the white line of PCN, respectively; (c and d) typical AFM image and its height curve determined along the white line of PCNInd_{0.15}, respectively.

Fig. S5. N₂ adsorption/desorption isotherms of samples.

Fig. S6. The change in color of PCN with increasing amount of indole.

Fig. S7. H_2 production rate ($\lambda > 420$ nm).

Fig. S8. (a) XRD pattern of PCNInd_{0.15} before and after reaction; (b) FT-IR spectra of PCNInd_{0.15} before and after reaction.

Fig. S9. TEM of PCNInd_{0.15} after reaction.

Fig. S10. The effect of photocatalysts amount on photocatalytic activity.

Elemental analysis							
Sample	C (wt.%)	N (wt.%)	H (wt.%)	C/N (atomic ratio)			
PCN	34.15	59.76	2.06	0.67			
PCNInd _{0.15}	33.20	60.09	2.36	0.64			

Table S1. Elemental analysis of PCN and $PCNInd_{0.15}$.

Elemental analysis							
Sample	C (wt.%)	N (wt.%)	O (wt.%)	C/N (atomic ratio)			
PCN	31.85	51.40	16.76	0.72			
PCNInd _{0.15}	30.87	53.36	15.77	0.67			

 Table S3. Summary of the previously reported hydrophilic PCN with regard to synthesis process.

Sample ^a	Precursors	E _g (eV)	Application	Water contact angle (°)	Synthetic methods	Synth etic steps	Ref.
Fe(OH) ₃ /PCN composite membrane	PCN NSs + Fe(OH) ₃ + Anodic aluminum oxide support		Water purification	68.5	$\begin{array}{l} Preparation of PCN\\ NSs (polymerization \\ + calcination + \\ ultrasonic treatment)\\ + Preparation of \\ Fe(OH)_3\\ nanoparticles + \\ Fabrication of \\ membranes (the \\ deposition of g- \\ C_3N_4 nanosheets layer \\ + the deposition of \\ Fe(OH)_3\\ nanoparticles) \end{array}$	Six	[1] J. Membrane Sci., 2018, 564 , 372–381
Oxygen- containing and amino groups functional carbon nitride atomically-thin porous sheets	Bulk PCN	2.96	Photocatalytic H_2 evolution	28.45	Calcination + Continuous secondary calcination + Calcination under the flowing air + Calcination under NH ₃	Four	[2] Energy Environ. Sci., 2018, 11, 566–571
Plasma-treated PCN	PCN	2.86	Photocatalytic degradation of Rhodamine B	51.8	Polymerization + Plasma treatment	Two	[3] <i>Carbon</i> , 2017, 123 , 651–659
Soluble PCN NSs/PCN	Soluble PCN NSs + PCN	2.70	Photocatalytic H_2 evolution		Preparation of bulk PCN (polymerization) + Preparation of soluble PCN NSs (treatment at 180 °C +	Four	[4] Appl. Catal. B: Environ., 2019, 247 , 70–77

vacuum freeze-drying treatment) + Preparation of soluble PCN NSs/PCN (ultrasonic treatment)

G-C ₃ N ₄ - COOH	g-C ₃ N ₄ NSs + Chloroacetic acid		Reverse osmosis desalination	58.5 ± 1.2	Polymerization + Functionalization reaction	Two	[5] Sep. Purif. Technol., 2020, 235 , 116134
Porous PCN NSs	PCN	2.76	Photocatalytic H ₂ evolution	48	Polymerization + Calcination	Two	[6] Mater. Today Chem., 2022, 26 , 101084
Functional carbon nitride with amphiphilic carbon and C– O–C chain linked melem units	Melem + Formaldehyde	2.52	Photocatalytic H ₂ evolution and photocatalytic selective oxidation of sulfide	39.8	Calcination + Purification of melem + Formaldehyde treatment + Calcination	Four	[7] J. Mater. Chem. A, 2021, 9 , 21732– 21740
Microporous carbon nitride (C ₃ N _{5.4}) with tetrazine based molecular structure	Aminoguanidi ne + Ultra- stable Y zeolite	2.27	Adsorption of CO_2 and water		Pretreatment of aminoguanidine + Polymerization + Treating with 5 wt.% hydrofluoric acid	Three	[8] Angew. Chem. Int. Ed., 2021, 60 , 21242–21249
S-doped carbon nitride/graphen e oxide 3D hierarchical framework	S-doped g- C ₃ N ₄ + Large flake size graphene oxide		Mercury removal from desulfurization slurry	42	Preparation of S doped carbon nitride (S-doped g-C ₃ N ₄) (pretreatment of melamine + calcination) + Fabrication of large flake size graphene oxide (LGO) (centrifugal classification method) + Preparation of S- doped g-C ₃ N ₄ /LGO aerogel (SGA) (hydrothermal treatment)	Four	[9] Sep. Purif. Technol., 2020, 239 , 116515
Interfacial coupling perovskite CeFeO ₃ on layered graphitic carbon nitride	Melamine + a mixed Fe and Ce solution and NH ₄ OH	PCN (2.85) and CeFe O ₃ (1.96)	Nitrogen fixation and organic pollutants demineralizati on	65.5	Co-precipitation + Calcination	Two	[10] Chem. Eng. J. 2022, 427 , 131406
GCN (graphite phase carbon nitride)-SA (sulfuric acid) membrane	GCN-SA		Selective permeation	24	Preparation of pristine GCN NSs (polymerization + ultrasonic treatment) + Preparation of GCN-SA composite (heating treatment with SA) + Preparation of membranes (vacuum filtration method)	Four	[11] Nat. Commun., 2019, 10 , 2500
PCN with surface N- hydroxymethyl ation	PCN	2.79	Photocatalytic H ₂ O ₂ production	52.5	Polymerization + Ultrasonic washing at 80 °C + Being treated by formaldehyde solution	Three	[12] Adv. Funct. Mater., 2022, 32 , 2111125
Superficial hydroxyl and amino groups synergistically	PCN		CO ₂ electroreductio n	22.5	Polymerization + Calcination under the flowing air + Calcination under the	Three	[13] ACS Catal., 2019, 9 , 10983– 10989

active PCN				NH ₃					
Loofah-like carbon nitride sponge	Supramolecula r precursor	2.92	Photocatalytic transfer hydrogenation of nitrophenols with water as the hydrogen source	47	Preparation of supramolecular precursor (microwave irradiation under 180 °C + stirring, filtering, washing and drying + treatment with cyanuric acid) + Preparation of loofah- like carbon nitride sponge (calcination + calcination)	eparation of pramolecular rsor (microwave ation under 180 C + stirring, ng, washing and ng + treatment cyanuric acid) + ration of loofah- carbon nitride ge (calcination + calcination)			
Multiple Doped Carbon Nitrides	Dicyandiamide + NaI	2.63	Photocatalytic H_2 evolution	44.12	Calcination	One	[15] ACS Appl. Mater. Interfaces, 2019, 11 , 22255– 22263 Our previous work		
PCNInd _{0.15}	Urea + Indole	2.62	Photocatalytic H ₂ evolution	39.9	Copolymerization	One	This work		

^a PCN denotes polymer carbon nitride; NSs denotes nanosheets and "---" denotes no applicable.

Table S4. A set of control parameters were carried out as follows. Entry 14 displayed

the optimized conditions.

Entry	The content	PCNInd _{0.15}	pH of the	Sacrificial	Wavelength	Activity			
Ениу	of Pt	(mg)	solution	agent	(nm)	(µmol·h ^{−1})			
pH de	pH dependence (Sodium hydroxide solution regulation)								
1	2 wt%	20	1	Lactic acid	$\lambda > 420$	55.85			
2	2 wt%	20	3	Lactic acid	$\lambda > 420$	49.20			
3	2 wt%	20	5	Lactic acid	$\lambda > 420$	37.37			
4	2 wt%	20	7	Lactic acid	$\lambda > 420$	25.80			
5	2 wt%	20	9	Lactic acid	$\lambda > 420$	22.92			
Wavel	Wavelength dependence								
6	2 wt%	20	1	Lactic acid	$\lambda > 420$	55.85			
7	2 wt%	20	1	Lactic acid	$\lambda = 420$	17.12			
8	2 wt%	20	1	Lactic acid	$\lambda = 450$	2.03			
9	2 wt%	20	1	Lactic acid	$\lambda = 500$	0.17			
Pt coc	Pt cocatalyst dependence								
10	0.5 wt%	20	1	Lactic acid	$\lambda > 420$	26.34			

11	1 wt%	20	1	Lactic acid	$\lambda > 420$	33.12
12	2 wt%	20	1	Lactic acid	$\lambda > 420$	55.85
13	3 wt%	20	1	Lactic acid	$\lambda > 420$	49.86
14	5 wt%	20	1	Lactic acid	$\lambda > 420$	38.58

References

- Y. J. Wang, L. F. Liu, J. D. Hong, J. Cao and C. L. Deng, *J. Membrane Sci.*, 2018, 564, 372–381.
- 2 N. N. Meng, J. Ren, Y. Liu, Y. Huang, T. Petit and B. Zhang, *Energy Environ. Sci.*, 2018, 11, 566–571.
- 3 Z. Y. Mao, J. J. Chen, Y. F. Yang, L. J. Bie, B. D. Fahlman and D. J. Wang, *Carbon*, 2017, **123**, 651–659.
- 4 X. H. Wu, X. F. Wang, F. Z. Wang and H. G. Yu, *Appl. Catal. B: Environ.*, 2019, 247, 70–77.
- 5 S. S. Shahabi, N. Azizi, V. Vatanpour and N. Yousefimehr, Sep. Purif. Technol., 2020, 235, 116134.
- L. Bao, Y. Liu, Z. Yu, Y. Xue, S. Yan and H. Gao, *Mater. Today Chem.*, 2022, 26, 101084.
- 7 S. L. Yang, Q. Wang, Q. C. Wang, G. Li, T. X. Zhao, P. Chen, F. Liu and S.-F.
 Yin, J. Mater. Chem. A, 2021, 9, 21732–21740.
- 8 C. I. Sathish, S. Premkumar, X. Z. Chu, X. J. Yu, M. B. H. Breese, M. Al-Abri, A. H. Al-Muhtaseb, A. Karakoti, J. B. Yi and A. Vinu, *Angew. Chem. Int. Ed.*, 2021, 60, 21242–21249.

- 9 M. Li, B. Wang, M. Q. Yang, Q. H. Li, D. G. Calatayud, S. H. Zhang, H. Y. Wang,
 L. D. Wang and B. Y. Mao, *Sep. Purif. Technol.*, 2020, 239, 116515.
- 10C. E. Choong, C. M. Park, Y.-Y. Chang, J.-K. Yang, J. R. Kim, S.-E. Oh, B.-H. Jeon, E. H. Choi, Y. Yoon and M. Jang, *Chem. Eng. J.*, 2022, **427**, 131406.
- 11 Y. Wang, N. N. Wu, Y. Wang, H. Ma, J. X. Zhang, L. L. Xu, M. K. Albolkany and B. Liu, *Nat. Commun.*, 2019, **10**, 2500.
- 12B. Y. Liu, J. Y. Du, G. L. Ke, B. Jia, Y. J. Huang, H. C. He, Y. Zhou and Z. G. Zou, Adv. Funct. Mater., 2022, 32, 2111125.
- 13 N. N. Meng, W. Zhou, Y. F. Yu, Y. Liu and B. Zhang, ACS Catal., 2019, 9, 10983–
 10989.
- 14F. L. Yao, L. M. Dai, J. B. Bi, W. K. Xue, J. Y. Deng, C. C. Fang, L. T. Zhang, H.
 A. Zhao, W. Y. Zhang, P. Xiong, Y. S. Fu, J. W. Sun and J. W. Zhu, *Chem. Eng. J.*, 2022, 444, 136430.
- 15Z. Y. Fang, D. Li, R. J. Chen, Y. Y. Huang, B. F. Luo and W. D. Shi, ACS Appl. Mater. Interfaces, 2019, 11, 22255–22263.