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S1. Experimental Section

S1.1. Chemicals

Methanol (≥ 99.5%), ethanol (≥ 99.7%), isopropyl alcohol (≥ 99.5%), N-methyl-2-pyrrolidone (NMP, 

99.9%), and phytic acid solution (PA, 70% in H2O) were obtained from Makclin Chemistry 

(Shanghai, China). Cobalt acetate tetrahydrate (Co(OAc)2·4H2O, 99%), and 2-methylimidazole 

(HMeIm, 98%) were purchased from Aladdin Chemistry (Shanghai, China). Polyvinylidene fluoride 

(PVDF 6020), and carbon black (Super P) were provided by Sigma-Aldrich (St. Louis, MO, USA). 

All chemicals were directly used without further purification.

S1.2. Synthesis of ZIF-67/MXene

First, Ti3C2Tx MXene was prepared using the LiF/HCl solution to selectively remove the Al 

interlayers of Ti3AlC2 MAX phase, followed by the organic solvent intercalation-assisted sonication 

in N2-saturated deionized water to avoid the MXene oxidation [S1]. In a typical synthesis of the ZIF-

67/MXene precursors, 20 mmol (1.642 g) of HMeIm, and 2 mmol (0.4982 g) of Co(OAc)2·4H2O 

were dissolved into ultrapure water (20 mL and 12 mL), respectively. The Co2+ solution was added 

into 24 mL of Ti3C2Tx MXene aqueous solution (1 mg L-1) to obtain a homogeneous mixture solution 

by stirring for 30 min. The HMeIm solution was subsequently added to the above Co2+/MXene 

mixture solution. After stirring for 4 h, the purple product of ZIF-67/MXene was harvested by 

centrifugation and washed with water several times.

S1.3. Synthesis of N-GC/MXene

The as-synthesized ZIF-67/MXene precursors were transferred into a tube furnace and pyrolyzed at 

800 °C for 3 h under N2 atmosphere, with a heating rate of 2 °C min-1 to obtain the N-GC/MXene. 

Subsequently, the N-GC/MXene was immersed into 0.5 mol L-1 H2SO4 solution at 80 °C for 6 h to 
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eliminate the deposited Co and CoO. The product was washed with water several times until the 

supernatant became neutral and then dried under vacuum at 70 °C overnight.

S1.4. Synthesis of N, P-GC/MXene

In a typical phosphorization of N-GC/MXene with PA, 15 mg of N-GC/MXene was dispersed into 

the solvent of ethanol (0.7 mL) containing 56.7 μL of PA solution [S2]. After sonicating for 15 min 

and drying, the resulting mixture was then transferred into a tube furnace and heated at 1000 ºC for 2 

h under N2 atmosphere. Finally, the N, P-GC/MXene was obtained after cooling down to room 

temperature.

S1.5. Characterizations

The morphologies and microstructures of the as-synthesized samples were observed by field 

emission scanning electron microscopy (SEM, Hitachi SU-8000, Tokyo, Japan) with an accelerating 

voltage of 10.0 kV. Transmission electron microscopy (TEM), high-resolution TEM, energy-

dispersive X-ray spectroscopy (EDXS), and elemental mapping analysis were performed using a 

JEM-2100F instrument (JEOL, Tokyo, Japan) operating at 200 kV. X-ray photoelectron 

spectroscopy (XPS) data were collected with a PHI Quantera SXM (ULVAC-PHI) instrument using 

Al Kα radiation. X-ray diffraction (XRD) patterns were recorded using a Rigaku Rint 2000 X-ray 

diffractometer with monochromatic Cu Kα radiation (40 kV, 40 mA) at a scanning rate of 2 °C min-1. 

N2 adsorption-desorption isotherms were obtained using a Belsorp-max instrument (BEL, Japan). 

Fourier-transformed infrared spectra (FT-IR) were obtained using Bruker Alpha spectrometer 

(Ettlingen, Germany). Raman spectra were obtained by a DXR2xi Micro-Raman Spectrometer 

(Thermo Fisher, USA). The conductivities of the NaCl solutions were continuously measured by a 

REX DDSJ-308F conductivity meter (INESA Scientific Instrument, Shanghai, China).
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S1.6. Electrochemical measurements

The electrochemical properties of the corresponding electrodes were evaluated by cyclic 

voltammetry (CV), galvanostatic charge/discharge (GCD), and electrochemical impedance 

spectroscopy (EIS) using a CHI 760E electrochemical workstation (Chenhua, Shanghai, China). All 

electrochemical measurements with a standard three-electrode cell were performed at room 

temperature (25 °C) in 1.0 mol L-1 NaCl solution, which is composed of a platinum counter electrode 

and a KCl-saturated Ag/AgCl reference electrode. To prepare the working electrodes (mass loading: 

2 mg cm-2), a homogeneous slurry of the as-synthesized materials, PVDF, and carbon black at a mass 

ratio of 8: 1: 1 in NMP solvent was coated onto the graphite paper (0.5 cm2) and dried under vacuum 

overnight.

The specific capacitances (C, F g-1) were calculated by the following equation (1) from the GCD 

curves [S3]:

C = I × ∆t
m × V 

                                 (1)

where I is the current (A), ∆t is the discharge time (s), m is the mass of the sample (g), and V is the 

voltage window (V).

The areal capacitances (CA, mF cm-2) were calculated by the following equation (2) from the GCD 

curves [S4]:

CA  = I × ∆t
A × V 

                            (2)

where I is the current (A), ∆t is the discharge time (s), A is the area of graphite paper (cm2), and V 

is the voltage window (V).

The relationship between the measured current density (i) and scan rate (v) follows the equations 

(3) and (4) [S5, S6]:
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i = avb                                   (3)

log(i) = b log(v) + log(a)                    (4)

where a and b are modulatory parameters obtained from the fitted curves. Generally, the value of b 

approaching 0.5 suggests a diffusion-controlled process, while the value of b close to 1.0 indicates a 

surface-controlled process [S5]. Moreover, the contribution from diffusion-controlled process can be 

quantified by using equations (5) and (6) [S6, S7]:

i(V) = k1v + k2v1/2                         (5)

i(V)/v1/2 = k1v1/2 + k2                       (6)

where k1v and k2v1/2 represent the diffusion-controlled and diffusion-controlled contribution [S8, 

S9], respectively.

S1.7. Desalination performance measurements

The CDI measurements were carried out in a continuous cycle system including a peristaltic pump, 

constant current power supply, stirring device, a tank, and a pair of ion exchange membranes. An 

asymmetric CDI cell was assembled to evaluate desalination performance with the as-synthesized 

electrodes, e.g., N, P-GC/MXene, and activated carbon (AC) acting as the cathode and anode, 

respectively. The CDI electrodes were fabricated by a slurry mixing in NMP solution of the electrode 

materials: carbon black: PVDF=8: 1: 1. The slurry was coated on the graphite paper (3.5 ×3.5 cm2) 

and dried overnight at 80 ℃ in a vacuum. In the CDI experiment, the ion conductivity meter 

monitored and measured the real-time saline concentration variation under different concentrations 

and voltages. The volume of the NaCl solution was 32 mL, and the flow rate was 30 mL min-1. The 

salt adsorption capacity (SAC, mg g-1) [S3], areal salt adsorption capacity (ASAC, mg m-2) [S10], 

and mean salt adsorption rate (MSAR, mg g-1 min-1) at t min [S3] were calculated as the following 
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equations (7), (8) and (9):

SAC = (C0 - Ct) × Vs
m  

                         (7)

ASAC = (C0 - Ct) × Vs
A  

                        (8)

MSAR = SAC
t  

                                (9)

where C0 and Ct are the NaCl concentrations at the initial stage and t min (mg L-1), respectively; Vs is 

the solution volume (L); m is the total mass (g) of the electrode materials on the working electrodes; 

A is the area of the graphite paper (m2).
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Fig. S1. (A) XRD patterns of pure MXene, ZIF-67/MXene, and simulated ZIF-67. (B) FT-IR spectra 

of pure MXene and ZIF-67/MXene.

Note for Fig. S1. FT-IR spectrum of the ZIF-67/MXene possesses not only the conspicuous feature 

of Ti-C at 483 cm-1 [S11] from the Ti3C2Tx MXene, but also the characteristic peaks of ZIF-67, such 

as the band at 3121 cm-1 corresponded to C-H vibrations from the aromatic rings of HMeIm, 1578 

cm-1 for C=N in HMeIm, and those at 1416 cm-1, 1138 cm-1, and 750 cm-1 for the imidazole rings of 

HMeIm [S12, S13].
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Fig. S2. (A) High-resolution XPS spectra of N 1s and (B) N contents of N-GC/MXene and N, P-

GC/MXene.

Note for Fig. S2. The high-resolution N 1s spectra display three fitted peaks at 400.8, 399.5, and 

398.3 eV, which correspond to graphitic N, pyrrolic N, and pyridinic N [S14, S15], respectively.
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Fig. S3. CV curves at the scan rate from 0.5 to 100 mV s-1 of (A) N, P-GC/MXene, (B) N-

GC/MXene, and (C) pure MXene.
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Fig. S4. GCD curves at the current densities ranging from 0.5 to 10 A g-1 of (A) N, P-GC/MXene, (B) 

N-GC/MXene, and (C) pure MXene.
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Fig. S5. (A) Areal capacitance and (B) Areal salt adsorption capacity of the N, P-GC/MXene 

electrodes under different mass loading.
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Fig. S6. Fitted curves of current density and the scan rate in charge and discharge processes of N, P-

GC/MXene, and N-GC/MXene.
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Fig. S8. Dynamic SAC versus running time plots of (A) pure MXene and (B) N-GC/MXene, and the 

corresponding CDI Ragone plots of (C) pure MXene and (D) N-GC/MXene with the NaCl 

concentrations ranging from 50 to 1000 mg L-1.
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Fig. S9. Dynamic SAC versus running time plots of the N, P-GC/MXene based CDI cell at the NaCl 

concentrations of 5, 10, and 20 mg L-1 (Applied voltage, 1.4 V).
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Fig. S10. CDI Ragone plots of N, P-GC/MXene with the NaCl concentrations ranging from 50 to 

1000 mg L-1.
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Table S1. CDI performance comparisons between N, P-GC/MXene with other MXene-based 

electrode materials.

Electrodes Voltage (V) NaCl concentration (mg L-1) SAC (mg g-1) Refs

MXene/PVA 1.0 1000 51.1 [S16]

Pure MXene 1.2 292.5 13 [S17]

L-Ti3C2Tx MXene 1.2 877.5 30.08 [S18]

Porous Ti3C2Tx 1.2 5000 42.3 [S19]

MXene-NaOH 1.2 500 16.05 [S20]

MXene/CNT 1.2 1168.8 12 [S21]

MoS2/MXene 1.2 500 23.98 [S22]

Fe3O4@Ti3C2 1.2 500 44 [S23]

N-Ti3C2Tx 1.2 5000 43.5 [S24]

W18O49/Ti3C2 MXene 1.2 500 29.25 [S25]

CLF@Ti3C2Tx 1.2 600 34.0 [S26]

Preconditioned Ti3C2Tx 1.2 585 9.19 [S27]

Alk-Ti3C2Tx 1.2 1000 50 [S28]

Ar plasma/MXene 1.4 500 26.8 [S29]

mPDA/MXene 1.5 1000 36.53 [S30]

NH4HF2-etched MXene 1.6 498 12.1 [S31]

N-doped MXene 1.6 5000 53 [S32]

MXene@COF 1.6 1000 53.1 [S3]

MXene-derived N-TNF 1.8 500 44.8 [S33]

NaTi2(PO4)3/MXene 1.8 250 32.3 [S34]

N, P-GC/MXene 1.4 1000 55.3 This study
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Fig. S11. Langmuir isotherm and SAC experimental data of the N, P-GC/MXene in NaCl solution at 

concentrations ranging from 50 to 1000 mg L-1.

Table S2. Coefficients of Langmuir fitting.

Isotherm Model equation [S13] Parameters Values

qm 74.8

KL 0.00271Langmuir q =
qmKLC

1 +  KLC
r2 0.990
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