Supplemental Data

Influence of temperature-induced A-site cations redistribution on the functional properties of A-site complex polar perovskite K_{1/2}Bi_{1/2}TiO₃

Gina E Eyoum¹, Udo Eckstein¹, Hana Ursic^{2,3}, Monica P. Salazar⁴, Gerd Buntkowsky⁴, Pedro

B. Groszewicz⁵, Stefano Checchia⁶, Kyle G Webber¹, Neamul H Khansur^{1,*}

¹Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

²Electronic Ceramics Department, Jožef Stefan Institute, Ljubljana, Slovenia

³Jožef Stefan International Postgraduate School, Jamova cesta 39, Ljubljana, Slovenia

⁴Institute of Physical Chemistry, Technische Universität Darmstadt, 64287, Darmstadt, Germany

⁵Department of Radiation Science and Technology, Delft University of Technology, Delft 2629JB, Netherlands

⁶ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France

*corresponding author: neamul.khansur@fau.de

1. Temperature-dependent dielectric permittivity for samples cooled with different cooling rates from the Tmax of 900 °C

Temperature-dependent dielectric permittivity measured up to 600 °C during heating for KBT samples cooled with different cooling rates from the Tmax of 900 °C. The room temperature permittivity value increases with decreasing cooling rate.

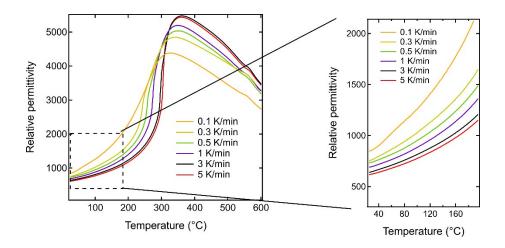


Figure S 1 Temperature-dependent dielectric permittivity of KBT samples treated with different cooling rates from the Tmax of 900 °C.

2. Temperature-dependent dielectric permittivity of slow-cooled KBT from different

T_{max}

Temperature-dependent dielectric peramittivity measured upto 600 $^{\circ}$ C during heating and cooling for maximum annealing temperature-dependent slow cooled KBT. Change in thermal hysteresis during heating and cooling found to be changed with increasing annealing T_{max}.

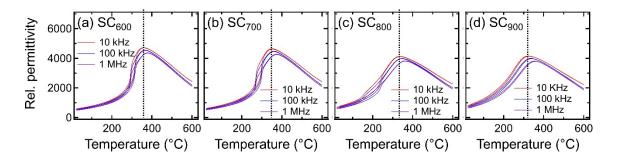


Figure S 2 Temperature-dependent dielectric permittivity of KBT samples treated with different T_{max} with a cooling rate of 0.1 K/min.

3. Analysis of TF-R from dielectric permittivity data

Inverse of permittivity data^[25] was used to identify the transition temperature during heating and cooling. The ΔT_{F-R} indicates the difference in F-R and R-F transition.

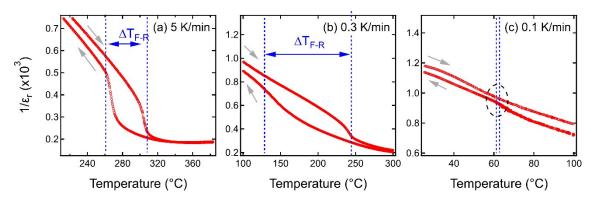


Figure S 3 Inverse dielectric permittivity for samples annealed with cooling rate (a) 5 K/min, (b) 0.3 K/min, and (c) 0.1 K/min from the T_{max} of 900 °C

4. Temperature-dependent dielectric permittivity of quenched KBT from different

T_{max}

Dielectric permittivity of KBT ceramics measured after quenching at different T_{max} . A significant increase in T_{F-R} is observed for Q_{900} KBT.

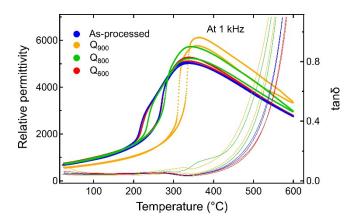


Figure S 4 Variation in dielectric permittivity for samples quenched at different T_{max}

5. Reversible FE-RE-FE state change in KBT

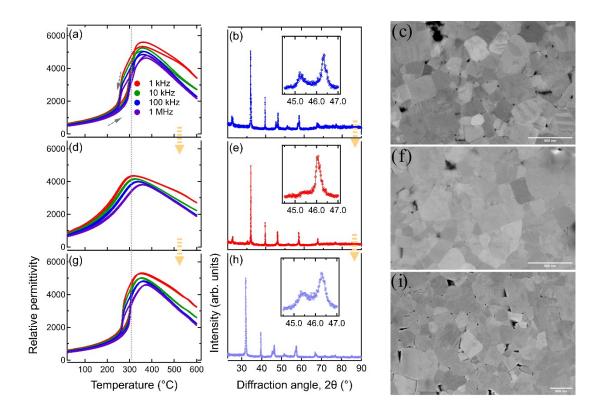


Figure S 5 Temperature-dependent permittivity, x-ray diffraction patterns, and microstructure for a single KBT sample after subsequent treatment with 5 K/min (a-c) NC₉₀₀, (d-f) SC₉₀₀, and (g-i) NC₉₀₀ indicating the slow cooling induced change can be reverted to the original state.

6. Simulation of NMR spectrum for TiO₂

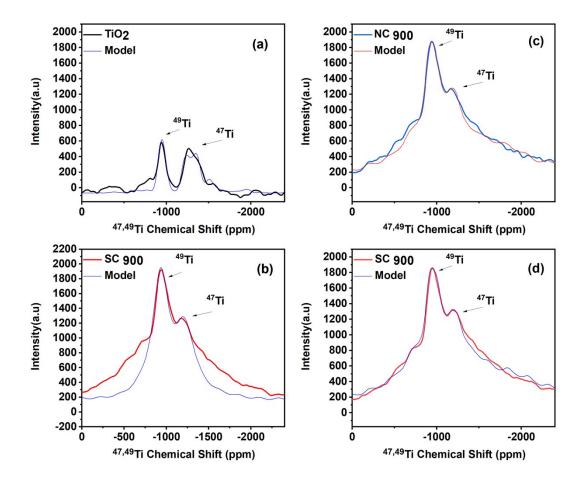


Figure S 6 Simulation of ^{47,49}Ti NMR spectra with different models (a) TiO₂ with int2QUAD,
(b) SC₉₀₀ KBT with int2QUAD, (c) NC₉₀₀ KBT with Czjzek, and (d) SC₉₀₀ KBT with Czjzek.
Simulation parameters are listed in Table S 1.

	model	chemical shift (ppm)	Quadrupolar		Window	MAS
			Coupling C _Q	eta	function	frequency
			(kHz)		(Hz)	(Hz)
TiO ₂	int2QUAD	-907	4481	0	-3000	10000
NC ₉₀₀	Czjzek	-870	3750* (7500)	-	3500	8000
SC_{900}	Czjzek	-880	4000* (8000)	-	3500	8000
SC ₉₀₀	int2QUAD	-911	3122	0	8000	8000

Table S 1 Simulation parameters for ^{47,49}Ti NMR spectra, simulated with DMfit.^[51]

*average CQ value computed from the Czjzek model (value in parenthesis represents CQ_max used as input for the distribution in dmfit) (Ref:10.1002/mrc.984)

7. Internal residual stress measurement using synchrotron x-ray diffraction.

The azimuth angle-dependent diffraction data were collected at the Spring8 using a monochromatic x-ray beam with an energy of 24 keV ($\lambda = 0.5166$ Å) and with an area detector Rigaku Hypix-9000HE. A beam size of 300 µm × 300 µm was used. Azimuth angle-dependent variation in d-spacings, i.e., 20 position of selected individual reflections, can reveal the extent of internal residual stress in a material. Analysis of peak positions of 110 pc, 111 pc, and 200 pc reflections did not show any significant variation in internal residual stress within the sensitivity of the measurement.

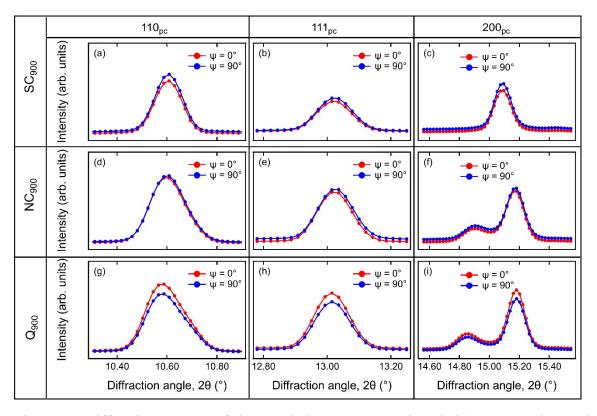


Figure S 7 Diffraction patterns of slow cooled (SC₉₀₀), normal cooled (NC₉₀₀), and quenched (Q₉₀₀) KBT for azimuth angle, $\psi = 0^{\circ}$, 90°. No significant variation in peak position with azimuth angle is evident from the diffraction data.