Electronic Supplementary Information

Oil-paper-umbrella-inspired passive radiative cooling using recycled packaging foam

Yang Liu,^a Xiaojie Liu,^a Fangqi Chen,^a Yanpei Tian,^{a, b} Andrew Caratenuto^a and Yi Zheng*^{a, c}

^a Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA

^b Material Science Engineering, Physical Science Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

^c Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA

*e-mail: y.zheng@northeastern.edu

Fig. S1. Optical images of OFC samples with and without H₂O₂ bleaching, respectively.

Fig. S2. Hemispherical spectral reflectance of OFC samples with and without H_2O_2 bleaching, respectively, plotted against the normalized AM 1.5 spectrum (ASTM G173) and the atmospheric window.

Fig. S3. (a) Image of mechanically crushed PS powder. (b-f) SEM images of the irregular-shaped PS microparticles.

Fig. S4. SEM images of a 90 mm-diameter and 3-mm-thick OFC sample at different magnifications.

Fig. S5. Water contact angle images of OFC samples with and without H₂O₂ bleaching, respectively.

Fig. S6. Hemispherical spectral reflectance of OFC sample and tung-oil paper plotted against the normalized AM 1.5 spectrum (ASTM G173) and the atmospheric window, respectively.

Fig. S7. Photograph of the experimental apparatus for real-time measurement of passive radiative cooling performance (Boston, MA, USA, 42.36° N, 71.06° W, September 24, 2022).

Fig. S8. Hemispherical spectral reflectance measurements of OFC sample before and after outdoor exposure for 3 months.