Supporting Information

Ultrahigh conductivity and antifreezing zwitterionic sulfobetaine hydrogel electrolyte for low-temperature resistance flexible supercapacitors

Geliang Zhang, Xinguo Yang,* Honghao Shu, Wenbin Zhong*

College of Materials Science and Engineering, Hunan University, Changsha, 410082,

P. R. China

* Corresponding author, Email: wbzhong@hnu.edu.cn.

before reaction

after reaction

Fig S1. Images left to right showing the hydrogels before and after the reaction (PHEAA, PSH₂₋₈, PSH₄₋₆, PSH₆₋₄, PSH₈₋₂ and PSBMA)

Fig S2. Compressive stress-strain curves of (a) PHEAA, (b) PSH₂₋₈, (c) PSH₄₋₆, (d)

PSH₆₋₄.

Fig S3. Hydrogels adhered to various materials (a) glass, (b) rubber, (c) ceraics, (d) PTFE, (e) Al, (f) stainless steel.

Fig S4. Contact angel of water droplet on different substrates

Fig S5. Change of contact angles of water at 0 second, 10 seconds and 15 seconds for different hydrogel, (a) PSH₂₋₈, (b) PSH₄₋₆, (c) PSH₆₋₄.

Fig S6. C 1s spectra of (a) PSH_{4-6} and (b) $PSH_{4-6/LiCl(6)}$. (c) N 1s and (d) S 2p spectra of PSH_{4-6} and $PSH_{4-6/LiCl(6)}$ for comparison.

Fig S7. (a) DSC results of PSH_{4-6} hydrogel without and with 6 M LiCl. (b) Water loss rate of PSH_{4-6} hydrogels after immersing in different concentrations of LiCl solution at room temperature.

Fig S8. The EIS curves of PHEAA/LiCl(6) hydrogels at different temperatures.

Fig S9. In-situ AFM graph of PSH_{4-6} hydrogel without/with 6 M LiCl at the same location. The height retrace (a), phase retrace (c) and 3D images (e) of PSH_{4-6} hydrogel. The corresponding graph of $PSH_{4-6/LiCl(6)}$ ((b) (d) (f)).

Fig S10. (a) FITR spectra and (b) XRD spectra of $Ti_3C_2T_X/rGO/TA$ composite films.

Fig S11. SEM images of $Ti_3C_2T_X/rGO/TA_{10/1/0}$ (a and b), $Ti_3C_2T_X/rGO/TA_{10/1/5}$ (c and

d).

Fig S12. Electrochemical properties of supercapacitor constructed with as-prepared film. (a) GCD curves at a current density of 1 A g^{-1} . (b) Specific capacitance versus different current densities (1-20 A g^{-1})

Fig S13. The EIS curves of flexible supercapacitors at room temperature.

Sample	S 2p 1/2	S 2p 3/2	Area ratio
PSH ₂₋₈	167.64 (eV)	168.79 (eV)	1.054
PSH ₄₋₆	167.47 (eV)	168.61 (eV)	1.135
PSH ₆₋₄	167.33 (eV)	168.47 (eV)	1.326
SBMA	167.18 (eV)	168.38 (eV)	1.553
PSH _{4-6/LiCl(6)}	167.15 (eV)	168.20 (eV)	0.756

Table S1. Different molar ratio hydrogels S 2p XPS data

 Table S2. Summary of ionic conductivity of different conductive hydrogel at room

temperature.

Components	Conducting ions	Conductivity (S m ⁻¹)	Refs
SBMA-HEA	LiCl	14.6	1
SBMA-PAM	NaCl	3.674	2
SBMA-CNF	ZnSO ₄	2.46	3
SBMA-PVA-PAM	ZnCl ₂	1.57	4
PVA-Thioctic acid	AlCl ₃	~0.23	5
TBOT-BA	LiTFSI	0.134	6
PAMPS-PAAm	LiCl	2.29	7
PVA-CNF	NaCl	3.2	8
PAMPS-MC	КОН	10.5	9
PAO/PEI	КОН	22.35	10
PVA/glycerol	CH ₃ COONa	8.127	11
SBMA-HEAA	LiCl	25.8	Our Work

Electrode material	Electrolyte components	Conductivity (S m ⁻¹)	Capacitance	Refs
Activated carbon	SBMA-HEA/LiCl	1.26 at -40°C	134 mF cm ⁻² at -30°C	12
Activated carbon	SBMA-AA/ZnCl ₂	1.56 at -60°C	~50 F g ⁻¹ (0.5 A g ⁻¹) at -60°C	13
Activated carbon	SBMA-AM/EG	0.151 at -50°C	62 F g ⁻¹ (62.5 mA g ⁻¹) at -50°C	14
Activated carbon	SBMA-AM-AMPS	3.4 at room temperature	12.5 F g ⁻¹ (0.5 A g ⁻¹) at -10°C	15
Carbon nanotubes	PVA/P(SBMA-AM)/ CaCl ₂	0.28 at -40°C	-	16
-	SBMA-AM-PVA/LiCl	7.95 at -45.3°C	-	17
Polypyrrole	MMT-AM/EMIMBF ₄	0.518 at -30°C	\sim 35 mF cm ⁻² at -30°C	18
Polyaniline	PVA/H ₂ SO ₄ /Glycerol	1.71 at -40°C	268 mF cm ⁻² at -20°C	19
Graphene	VC-PVA PEDOT:PSS/EG	4.0 at -30°C	212.6 F g ⁻¹ (0.1 A g ⁻¹) at -20°C	20
Activated carbon	HPC/PVA/ Glycerol/LiClO ₄	0 .57 at -40°C	143.6 F g ⁻¹ (2 A g ⁻¹) at -40°C	21
Graphene	PVA/EG/Zn(Tf) ₂	0.353 at -40°C	202.8 F g ⁻¹ (0.2 A g ⁻¹) at -20°C	22
Activated carbon	Carrageenan-PVA/EG	3.18 at -40°C	113.6 F g ⁻¹ (3 A g ⁻¹) at -40°C	23
Activated carbon	Carrageenan-AM/LiCl/KCl	1.9 at -40°C	73.4 F g ⁻¹ (1 A g ⁻¹) at -40°C	24
Activated carbon	PAMPS-AM/EG	0.1 at -30°C	55.5 F g ⁻¹ (1 A g ⁻¹) at -20°C	25
Activated carbon	Silk backbone/ EG/ChCl/ZnCl ₂	0.363 at -20°C	242.9 F g ⁻¹ (0.2 A g ⁻¹) at -18°C	26
Ti ₃ C ₂ T _X /rGO/TA	SBMA-HEAA/LiCl	2.21 at -40°C		Our
			133 F g ⁻¹ (0.5 A g ⁻¹) at -40°C	Wor
				k

 Table S3. Summary of antifreezing hydrogel electrolytes and supercapacitors

-

_

References

- J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji, H. Jiang and L. Liu, *Adv. Funct. Mater.*, 2021, **31**, 2009438.
- 2. B. Yang and W. Yuan, *ACS Appl. Mater. Interfaces*, 2019, **11**, 40620-40628.
- F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong and C. Zhi, *Adv. Energy Mater.*, 2020, 10, 2000035.
- Z. Zhou, Z. He, S. Yin, X. Xie and W. Yuan, *Composites Part B*, 2021, 220, 108984.
- D. Pei, S. Yu, X. Zhang, Y. Chen, M. Li and C. Li, *Chem. Eng. J.*, 2022, 445, 136741.
- S. Wang, M. Bai, C. Liu, G. Li, X. Lu, H. Cai, C. Liu and W.-Y. Lai, *Chem. Eng.* J., 2022, 440, 135824.
- X. Li, D. Lou, H. Wang, X. Sun, J. Li and Y. N. Liu, *Adv. Funct. Mater.*, 2020, 30, 2007291.
- Y. Ye, Y. Zhang, Y. Chen, X. Han and F. Jiang, *Adv. Funct. Mater.*, 2020, 30, 2003430.
- N. Sun, F. Lu, Y. Yu, L. Su, X. Gao and L. Zheng, ACS Appl. Mater. Interfaces, 2020, 12, 11778-11788.
- X. Guo, Y. Lu, D. Fu, C. Yu, X. Yang and W. Zhong, *Chem. Eng. J.*, 2023, 452, 139208.
- 11. G. Li, X. Zhang, M. Sang, X. Wang, D. Zuo, J. Xu and H. Zhang, J. Energy

Storage, 2021, 33, 101931.

- J. Yang, Z. Xu, J. Wang, L. Gai, X. Ji, H. Jiang and L. Liu, *Adv. Funct. Mater.*, 2021, **31**, 2009438.
- 13. Q. Fu, S. Hao, L. Meng, F. Xu and J. Yang, *ACS Nano*, 2021, **15**, 18469-18482.
- W. Sun, Z. Xu, C. Qiao, B. Lv, L. Gai, X. Ji, H. Jiang and L. Liu, *Adv. Sci.*, 2022, 9, 2201679.
- W. Diao, L. Wu, X. Ma, L. Wang, X. Bu, W. Ni, X. Yang and Y. Fang, *J. Appl. Polym. Sci.*, 2020, **137**, 48995.
- O. D. Hu, J. Lu, S. Weng, L. X. Hou, X. Zhang and X. C. Jiang, *Polymer*, 2022,
 254, 125109.
- Y. Wang, P. Chen, X. Zhou, Y. Liu, N. Wang and C. Gao, ACS Appl. Mater. Interfaces, 2022, 14, 47100-47112.
- Q. Hu, S. Cui, K. Sun, X. Shi, M. Zhang, H. Peng and G. Ma, *J. Energy Storage*, 2022, **50**, 104231.
- K.-h. Zhu, X.-d. Han, S.-f. Ye, P.-x. Cui, L.-y. Dou, W.-b. Ma, X.-y. Tao, X.-y.
 Wei and S. Heng, *J. Energy Storage*, 2022, **53**, 105096.
- T. Xu, D. Yang, S. Zhang, T. Zhao, M. Zhang and Z.-Z. Yu, *Carbon*, 2021, 171, 201-210.
- N. Lu, R. Q. Na, L. B. Li, C. Y. Zhang, Z. Q. Chen, S. L. Zhang, J. S. Luan and
 G. B. Wang, ACS Appl. Energ. Mater., 2020, 3, 1944-1951.
- 22. J. Liu, Z. Khanam, S. Ahmed, T. Wang, H. Wang and S. Song, ACS Appl. Mater. Interfaces, 2021, 13, 16454-16468.

- Y. Yang, K.-P. Wang, Q. Zang, Q. Shi, Y. Wang, Z. Xiao, Q. Zhang and L. Wang, J. Mater. Chem. A, 2022, 10, 11277-11287.
- 24. S. Wu, D. Lou, H. Wang, D. Jiang, X. Fang, J. Meng, X. Sun and J. Li, *Chem. Eng. J.*, 2022, **435**, 135057.
- H. Wang, X. Li, D. Jiang, S. Wu, W. Yi, X. Sun and J. Li, *J. Power Sources*, 2022, **528**, 231210.
- Z. Li, X. Xu, Z. Jiang, J. Chen, J. Tu, X. Wang and C. Gu, ACS Appl. Mater. Interfaces, 2022, 14, 44821-44831.