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Experimental details

Synthesis method

DG was prepared using melamine (as a carbon and nitrogen precursor) and zinc powder (as a 
template) taken in 1:1 ratio. The two were mixed completely using mortar pastel and then annealed at 
800 °C under argon atmosphere for 2 h with ramp rate of 3 °C min-1 to form carbon framework. 
Thereafter, the as prepared carbon material was annealed at different temperatures: 950 °C, 1050 °C, 
1150 °C at a rate of 3 °C min-1 under flowing argon gas and maintained at this temperature for 2 h to 
form defects by evaporation of Zn and nitrogen from the carbonized material and were named as DG-
T. (T= 950, 1050, 1150 °C). The ratio of melamine and zinc were also varied as 1:2, 1:1, 2:1 and 10:1 
to check the effect of amount of Zn in the product and the same annealing procedure was followed, 
first carbonization at 800 °C and then removal of Zn, N at 1050 °C (optimized for ORR). Also, to 
determine the effect of nitrogen, only carbon source i.e., dextrose and Zn were used to prepare C1:1 at 
800 °C followed by 1050 °C.

Instrumentation. 

X-ray diffraction (XRD) patterns of the samples to investigate the crystal structure were obtained from 
an X-ray diffractometer (Bruker D8 Advances instrument) with Cu-Κα (λ = 1.5406 Å) radiation in the 
2θ range from 10° to 70° with an acceleration voltage of 40 KV. 

The detailed surface microstructure of samples was analyzed by a transmission electron microscope 
(TEM, JEM2100 instrument). 

Bruker Multimode 8 atomic force microscope (AFM) was utilized to examine the topography and 
thickness of the nanosheets deposited on freshly cleaved micas. 

For surface area analysis, N2 adsorption/desorption tests were carried out at 77 K by a gas 
adsorption analyzer (Autosorb IQ Quantachrome instrument). The Brunauere-Emmette-Teller (BET) 
and Barrett-Joyner-Halenda (BJH) models were used to calculate the specific surface area and pore 
size, respectively of the samples, respectively.

The defective nature of the samples was shown by Raman spectra obtained from WITEC Focus 
Innovations Alpha-300 Raman confocal microscope under an excitation laser of 532 nm. 

The surface elemental composition and bonding configuration of the prepared samples was 
determined using X-ray photoelectron spectroscopy (XPS) spectrometer (K-Alpha 1063) instruments 
in an ultrahigh vacuum chamber (7X10-9 torr) using Al-Kα radiation (1486.6 eV). 

The NEXFAS spectra were measured in Beamline at Indus-2 (DMP/MG), UGC-DAE CSR, Indore 
under an ultra-high vacuum (UHV) chamber maintained at base pressure of 5x10-10 mbar. The 
measurements were taken in the Total electron yield (TEY) mode. 

Electrochemical Characterizations

Electrochemical characterizations were performed in a three-electrode cell using a Metrohm 
multichannel Autolab (M204) electrochemical workstation at room temperature. A catalyst coated 
rotating ring-disk electrode (RRDE; GC disk area 0.196 cm2; Pt ring area 0.041 cm2) was used as 
working electrode, Ag/AgCl (3 M KCl) as reference electrode and Pt wire as counter electrode. 

Formula used for the calculations:

All the potentials were calibrated vs RHE by using the equation:

      (1)                                  𝐸𝑅𝐻𝐸 =  𝐸𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.0591 𝑝𝐻 + 0.210

All the electrochemical measurements (cyclic voltammetry (CV) and linear sweep voltammetry (LSV), 
chronoamperometry) were carried out in 0.1 M KOH (pH >13) solution that was saturated with O2 for 



30 min prior to the reaction and also during the reaction O2 saturation was maintained. As the system 
achieved equilibrium, the data was recorded at the scan rate of 10 mV s-1. During linear sweep 
voltammetry test, the rotation speed of the working electrode was increased from 625 to 4900 rpm at 
the scan rate of 10 mV s−1. The diffusion-limiting ( ), kinetic current densities ( ) and the number of 𝑗𝐿 𝑗𝐾

electrons transferred (n) per O2 molecule were calculated from the slopes (B) of the best linear fit lines 
of KL plot using KL equation which is given by:
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Where j is the measured current density, diffusion-limiting ( ), kinetic current densities ( ) and the 𝑗𝐿 𝑗𝐾

number of electrons transferred (n) per O2 molecule,  is rotating speed in rpm and B is the Levich 𝑤
slope.

B is given by:

                             (3)                                           𝐵 = 0.62 𝑛𝐹𝐶0𝐷3/2
0 𝜗 ‒ 1/6

where F is the Faraday constant (F = 96485 C mol-1),  is the bulk concentration of O2 in the solution, 𝐶0

is the diffusion coefficient of O2 in 0.1 M KOH (1.93 × 10-5 cm2 s-1), ϑ is the kinematic viscosity of 𝐷0 
the electrolyte (1.09× 10-2 cm2 s-1).

The number of electrons transferred (n) and H2O2 production yield is calculated from the RRDE 
measurement using equations:
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where n is the number of electrons transferred (n) during the ORR process,  and   is the absolute 𝐼𝐷 𝐼𝑅

value of the disk and ring current resp. and N is the current collection efficiency of the Pt ring (0.249 in 
this work).

Electrode preparation

The catalyst ink was prepared by dispersing 1 mg of the DG-T in 300 uL of water by ultrasonication 
for an hour to form a homogenous ink. Prior to dropcasting, the RRDE electrode was cleaned 
thoroughly by polishing it with 1, 0.3, and 0.05 μm alumina powder and was washed ultrasonically in 
deionized (DI) water. The optimized mass loading of the catalyst ink was coated on the surface of 
RRDE elecrode and was then vacuum-dried. For comparison, a separate Pt/C solution was prepared 
by dispersing the Pt/C in a water and isopropyl alcohol mixture (1:1) containing Nafion (5 %) followed 
by ultrasonication for 30 min.

Theoretical study

Theoretical calculations are performed using density functional theory (DFT) as implemented in the 
PWscf package of the Quantum ESPRESSO distribution.[1,2]  Generalized Gradient Approximation 
(GGA) with Perdew–Burke–Ernzerhof (PBE) functional is used to describe the exchange and 
correlation effect[3]. Projector-Augmented Wave (PAW) pseudopotentials are employed to treat the 
interactions between the ion cores and valence electrons[4]. Plane-wave cutoff energy of 450 eV is 



used in the calculations. The k-point sampling of the Brillion zone is obtained using a 1×9×1 mesh for 
model structures. The energies and force are converged within a threshold limit of 0.001 meV/per 
atom and 0.01 eV/Å respectively. The Fermi level was slightly broadened using a Marzari–Vanderbilt 
smearing of 50 meV. The vacuum of 15Å is considered to avoid the self-interaction between images.

Computational details:

Section S1:

Machine learning algorithm:

a. Calculations of simple linear fit predictive equation for ΔGOH.[5]

The linear fit of ΔGOH values with Dπ(EF) and R-Oπ (Figure S12) gives a following relations,

ΔGOH = -2.1 * Dπ(EF) + 0.99                                                                                            (6)

ΔGOH = -14.99 * R-Oπ + 0.99                                                                                           (7)

In eqn. (1) and (2), the intercepts are same (0.99). So, we can define a common function F(π) as 

follow, 

F(π) = 7.14 * R-Oπ + Dπ(EF)                                                                                            (8)

whereas, the value 7.14 is a slope of (2)/ (1) [14.99/2.1]. This function, F(π) is varying linearly with 
ΔGOH and gives a linear fit equation as follows,
ΔGOH = -1.16 * F(π) + 0.99                                                                                              (9)

b. Support Vector Regression (SVR):

Support Vector Regression is a supervised learning algorithm that finds the best fit line for the non-
linear dataset. In simple regression our goal is to minimize the error rate. But in SVR we try to fit the 
error within a certain threshold and the best fit line is the hyperplane that has the maximum number of 
points. The kernel functions transform the input data into a higher dimensional feature space to make 
it possible to perform the linear separation.[6,7]
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One of the popular choice for the loss function, due to Huber (1964) is
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where c is a predefined error constant. Using OLS one may obtain the form of the regression function,

                             =        (13)𝑓𝑖(𝑥) [(𝐾(𝑥𝑖,𝑥𝑖') +  𝜆𝐼) ‒ 1𝑦] 𝐾(𝑥𝑖,𝑥𝑖')                                    

where, the parameters ( ) and the Kernel function (K) are represented by:𝜃𝑖

θ =      and          
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c. Cross Validation

Cross-validation is a statistical method based on re-sampling technique, which helps to evaluate the 
performance of machine learning algorithms[8]. The k-fold cross validation is more popular that 
divides the given datapoints into k number of groups with different train/test datasets. Here, we used 
5-fold cross validation with grid search hyperparameter tuning to find the accurate predictive 
performance of machine learning (ML) algorithms (MLR, RFR, SVR) with best hyperparameter 
settings. All 101 datapoints are used for training (80%) and testing (20%) the ML models in 5 different 
datasets alternatively.

d. Code for Support Vector Regression (SVR):

# Importing Libraries

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

%matplotlib inline

# Importing the dataset

import io

df = pd.read_csv(io.BytesIO(uploaded['ml.csv']))

# Dataset is now stored in a Pandas Dataframe

df.head()



x = df.iloc[:, 0:2].values

y = df.iloc[:, 2].values

y = df.iloc[:,2].values

y = y.reshape(-1,1)

# Splitting the dataset into the Training and Test set

from sklearn.model_selection import train_test_split

x_train, x_test, Y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=4)

# Feature Scaling

from sklearn.preprocessing import StandardScaler

sc_X = StandardScaler()

X_train = sc_X.fit_transform(x_train)

X_test = sc_X.transform(x_test)

sc_y = StandardScaler()

y_train = sc_y.fit_transform(Y_train)

# Fitting SVR Regression to the dataset

from sklearn.svm import SVR

regressor = SVR(kernel = 'rbf')

regressor.fit(X_train, y_train)

y_pred = regressor.predict(X_test)

y_pred = y_pred.reshape(-1,1)

y_pred = sc_y.inverse_transform(y_pred)

y_pred

# Predicting the Test set results

X_val = sc_X.transform([[0.1371, 0.0347846]])



y_val = regressor.predict(X_val)

y_val = y_val.reshape(-1,1)

y_val = sc_y.inverse_transform(y_val)

y_val

# Cross Validation

from sklearn.model_selection import import KFold, cross_val_score

crossvali = (cross_val_score(regressor, sc_X.fit_transform(x), sc_y.fit_transform(y), cv=5, n_jobs
=1))

print(crossvali)

print(np.mean(crossvali))

 

e. Oxygen Reduction Reaction Pathways 

Oxygen reduction reaction (ORR) can occur in both acidic as well as alkaline environment. In four-
electron pathway, the oxygen is reduced directly into two H2O molecules in an acidic environment and 
generates four OH− in an alkaline medium as follows [9],

O2 + 4H+ + 4e− → 2H2O                  (acidic media)
O2 + 2H2O + 4e− → 4OH−                       (alkaline media)

But the ORR also can undergo through the two-electron pathway in which O2 is reduced to H2O2 in an 
acidic medium and free OOH ions in an alkaline medium as the intermediate species as follows,

acidic media:

O2 + 2H+ + 2e− → H2O2

alkaline media:

O2 + H2O + 2e− → OOH− + OH−

These intermediates hamper the efficiency of overall fuel cells. So, we need to find the selectivity of 
ORR pathways on a catalyst.

Therefore, we performed the DFT calculations to find the probability of formation of free OOH 
ion in the alkaline media for ideal site 21. (Free energy profile shown in Figure S14). We show that 
the step of free OOH ion formation is higher than formation of O* intermediate, which promoting the 
four electron ORR pathway on our ideal site 21. However, we also calculated the OHOH ion formation 
step (for acidic media), which shows a higher energy step as compared to step of O*. Therefore, we 
confirmed the four electron ORR is more favourable pathway over two electron pathways.

Section S2:



Calculation of adsorption free energies of molecules/intermediates for ORR and Free Energy 
Profile

In alkaline conditions, Oxygen Reduction Reaction (ORR) as,

 O +    𝑂2 +  2𝐻2 (𝑙) 4𝑒 ‒ ⟶ 4𝑂𝐻 ‒  

With the following reaction pathway,                 

 O +  + *                                                                                          𝑂2 +  2𝐻2 (𝑙) 4𝑒 ‒

O                                                                                 𝑂𝑂𝐻 ∗ +  𝐻2 (𝑙) +  𝑂𝐻 ‒  + 3𝑒 ‒

O                                                                                    𝑂 ∗ +  𝐻2 (𝑙) +  2𝑂𝐻 ‒  + 2𝑒 ‒

 𝑂𝐻 ∗ +  3𝑂𝐻 ‒  +

+ *                                                                                                                4𝑂𝐻 ‒  

The free energy profile is an important tool to identify the reaction mechanism and 
thermodynamic overpotential of oxygen reduction reaction. The Gibbs free energies (G) are 
calculated by using the following equation, G = E+ZPE–TS-neU, where E is the DFT energy, ZPE is 
the zero-point energy, TS is the entropic term, n is the number of electrons transferred and U is the 
applied potential at the electrode [10]. Here, we have considered that the TS and ZPE of adsorbed 
atoms/ions are negligible to that of the gaseous phase at room temperature and ambient pressure. At 
equilibrium potential of U = 0.4 V in free energy profile, the first and last step are in the same energy 
level and the highest uphill step between any two adjacent energies is the potential determining step. 
The corresponding energy difference is known as thermodynamic overpotential. At onset potential, all 
the reaction steps becoming downhill with exothermic pathway.

Figure S7. Comparision bar plot of ORR half-wave potential (E1/2) and current density (jL) of DG-
10:1, 2:1, 1:1, 1:2 and C-1:1.z



Results and Discussions

Figure S1. (a) The various substitutional sites: S denotes the dopant site in red, filled circles and C represents the active sites 
in the graphene lattice. Doping represented by b) pyrrolic-N doping, c) oxidinic-N doping, and defects by d) 5-8-5 defect, e) 
555-777 defect. The N, C, H represented by blue, wine, green colored spheres respectively.
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Figure S2. Dependence of ΔGOH on the (a) Dπ(EF) and (b) R-Oπ.[5]



 

  

 

Figure S3. Scatter plots showing ΔGOH predicted by various machine learning models on x-axis verses DFT 
computed ΔGOH on y-axis.



 

Figure S4.TEM image of DG1:1-1050; inset: Selected area electron diffraction (SAED) pattern 
of DG1:1-1050.



Figure S5. Deconvoluted spectra of C 1s of DG1:1-950, 1050, 
1150. 



Figure S6. Comparative CV plots of DG-10:1, 2:1, 1:1, 1:2 and C1:1 in 0.1 M KOH 
saturated with O2 at 10 mV s-1 scan rate.
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Figure S7. Comparison bar plot of half-wave potential (E1/2) and current density (j) of DG-10:1, 
2:1, 1:1,1:2 and C-1:1.



Figure S8. Comparison bar plot of ORR onset potential (Eonset), peak potential (Ep (ORR)) and 
half-wave potential (E1/2) of DG1:1-950, 1050, 1150.



Figure S9. Comparative polarisation curves of DG-10:1, 2:1, 1:1,1:2 and C-1:1 in 0.1 M KOH 
saturated with O2 at 1600 rpm.
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Figure S10.  UPS secondary cutoff (left) and valence (right) band region for DG1:1-950, 1050, 
1150.



                        

Figure S11. Ring and disk current of DG1:1 -1050 catalyst in O2 saturated 0.1 M KOH 
at 1600 rpm.



 

Figure S12. Free energy profile of ORR with two and four electron pathway steps.



Figure S13. π orbital projected density of states of site 21 (a) before and after adsorption of (b) OOH, (c) O and (d) OH 
intermediate of ORR. 
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Figure S14. Lowdin charge analysis to understand the ORR intermediate adsorption.



Figure S15. The mechanism of ORR on active site 21 of DG1:1-1050.



Figure S16. STM image of DG1:1-1050 (a) at 20nm and (b) at 1 nm.
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Site Dπ(EF) R-Oπ ΔGOH (SVR)

1 0.0282 -0.01217 0.93

2 0.0205 -0.02925 0.72

3 0.0231 -0.01274 0.93

4 0.00786 -0.01055 0.95

5 0.0296 -0.00088 0.98

6 0.014 -0.03336 0.65

7 0.0603 -0.02662 0.73

8 0.0215 0.037044 0.69

9 0.0298 0.052846 0.53

10 0.00292 0.011025 0.95

11 0.00867 0.016523 0.91

12 0.00646 -0.00177 0.99

13 0.046 0.036477 0.66

14 0.0379 0.020339 0.85

15 0.0173 0.026669 0.80

16 -0.00607 -0.00769 0.97

17 0.00216 0.008488 0.97

18 0.00264 -0.02206 0.83

19 0.0297 0.005447 0.97

20 0.0201 -0.02879 0.73

21 0.02186 -0.02419 0.79

22 0.0517 0.012388 0.91

Table S1: The values of Dπ(EF), R-Oπ and ΔGOH (predicted using the SVR model) for model I.



Site Dπ(EF) R-Oπ ΔGOH (SVR)

1 0.0227 -0.03316 0.65

2 0.0442 -0.01866 0.85

3 0.00817 -0.01839 0.88

4 0.0464 0.001472 0.96

5 0.0884 -0.01609 0.82

6 0.0781 -0.00927 0.89

7 0.0109 -0.03156 0.69

8 -0.00664 0.024859 0.84

9 0.0526 -0.00161 0.95

10 0.179 0.016021 0.60

11 0.0885 0.0434 0.50

12 0.0291 0.005493 0.97

13 0.113 -0.01815 0.75

14 0.0199 0.037958 0.68

15 0.239 -0.0093 0.53

16 0.0535 0.042508 0.58

17 0.0397 0.065715 0.43

18 0.0928 -0.0245 0.71

19 0.0393 0.048512 0.55

20 0.0156 0.016846 0.90

21 0.143 0.04368 0.36

22 0.0434 0.031853 0.72

23 0.0324 0.007575 0.96

24 0.0242 0.012754 0.93

25 0.0331 -0.03379 0.64

26 0.02186 -0.03187 0.68

27 0.027 0.009211 0.95

28 0.093 0.029074 0.66

Table S2: The values of Dπ(EF), R-Oπ and ΔGOH (predicted using the SVR model) for model II.



Site Dπ(EF) R-Oπ ΔGOH (SVR)

1 0.0149 -0.02363 0.81

2 0.0205 -0.02551 0.78

3 0.0128 -0.01829 0.88

4 0.0894 -0.00859 0.87

5 0.0284 -0.01531 0.90

6 0.0594 0.004301 0.94

7 0.027 -0.02825 0.73

8 0.0132 0.019746 0.88

9 0.031 -0.01326 0.92

10 0.057 0.029598 0.72

11 0.114 -0.00701 0.83

12 0.0417 -0.0038 0.96

13 0.101 -0.02815 0.64

14 0.0147 0.040131 0.66

15 0.132 -0.02658 0.61

16 0.0591 -0.00622 0.93

17 0.0674 0.009849 0.90

18 0.0954 -0.01102 0.85

19 0.0838 0.041644 0.53

20 0.00161 0.002272 0.99

21 0.195 0.002698 0.65

22 0.103 -0.00597 0.86

23 0.034 -0.00019 0.97

24 0.0249 0.015524 0.91

25 0.0371 -0.03478 0.62

26 0.066 -0.03021 0.66

27 0.0225 -0.01393 0.92

28 0.083 0.037417 0.58

29 0.0321 -0.01749 0.87

Table S3: The values of Dπ(EF), R-Oπ and ΔGOH (predicted using the SVR model) for model III.



ND-GLC: Pyridinic-N dominated and defect-enriched graphene-like carbon nanomaterial

NGM: Nitrogen-doped graphene mesh

NCN-1000-5: N doped ultrathin carbon nanosheets at 1000 1C with a mass ratio of 1:1

NLPC: 3D nanosheet-linked-polyhedron carbon

DN-UGNR: defect‐rich N‐doped ultranarrow graphene nanoribbons

2D-PPCN -2D phosphorus-doped porous carbon nanosheets

PD-C -defect-rich carbon nanomaterial

NKCNPs-900- N-doped carbon nanoparticles
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