Supporting Information A strategy for modulating the catalytic active center of AP thermal decomposition and its application: La-doped MgCo₂O₄

Guofei Zhang a, Xin Yu a, Zhenlong Wang a, Sirong Li a, Zhengyi Zhao a, Yunjiong Zhu a,

Yude Wang b*, Xuechun Xiao a*

- a School of Materials and Energy, Yunnan University, 650091 Kunming, People's Republic of China
- b Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 650091 Kunming, People's Republic of China

^{*} To whom correspondence should be addressed. Tel: +86-871-65037399, Fax: +86-871-65153832. E-mail: ydwang@ynu.edu.cn (Y. D. Wang)

^{*} To whom correspondence should be addressed. Tel: +86-871-65037399, Fax: +86-871-65153832. E-mail: xchxiao@ynu.edu.cn (X. CH. Xiao)

Fig. S1 The SEM patterns of the as-prepared Lax-MgCo₂O₄: (a) x=0.75%, (b) x=2%.

Fig. S2 TG-DSC curve of La1%-MgCo₂O₄ precursors (Heating rate 5°C/min, holding at 400° C for 1h).

Fig. S3 (a) The formation process of Lax-MgCo₂O₄ porous structure; Nitrogen adsorptiondesorption isotherm of the as-synthesized (b) Pure MgCo₂O₄, (c)La0.5%-MgCo₂O₄, (b) La0.75%-MgCo₂O₄, (c) La1%-MgCo₂O₄ and (d) La2%-MgCo₂O₄, respectively. Insert is the pore-size distribution calculated by the DFT method from desorption branch of the Lax-MgCo₂O₄, respectively.

				-		
	Samples	DFT pore size	DFT pore volume	BET specific surface		
		(nm)	(cm^{3}/g)	area (m ² /g)		
	La2%-MgCo ₂ O ₄	18.14	0.64	109.55		
	La1%-MgCo ₂ O ₄	21.71	1.02	185.22		
	La0.75%-MgCo ₂ O ₄	20.76	0.81	122.45		
	La0.5%-MgCo ₂ O ₄	22.71	0.89	139.34		
	MgCo ₂ O ₄	16.57	1.62	241.15		

Table S1 The structural parameters and BET specific surface area of pure $MgCo_2O_4$ and

Lax-MgCo₂O₄ (x = 0.5%, 0.75%, 1%, 2%).

Samples	O _{Latt}	$O_{\rm V}$	-OH	
Samples	relative content (%)	relative content (%)	relative content (%)	
La2%-MgCo ₂ O ₄	47.31	35.16	17.53	
La1%-MgCo ₂ O ₄	43.17	43.96	12.87	
La0.75%-MgCo ₂ O ₄	46.08	41.02	12.90	
MgCo ₂ O ₄	43.15	40.84	16.01	

Table S2 The relative ratios of O_{Latt}, O_V and -OH in O 1s of the pure $MgCo_2O_4$ and Lax-

 $MgCo_2O_4$ (x = 0.5%, 0.75%, 1%, 2%).

Fig. S4 Current-voltage curve of pure $MgCo_2O_4$ and Lax- $MgCo_2O_4$ (x=0.5%, 0.75%, 1%)

and 2%).

	, · · ·	-	,		
	Hall	Resistvity	Carrier		-
Samples	coefficient	(ohm·cm)	concentration	P/N type	
	$(cm^{3} \cdot c^{-1})$		(cm ⁻³)		
La2%-MgCo ₂ O ₄	3.62×10 ²	28.87	3.40×10 ¹⁶	Р	-
La1%-MgCo ₂ O ₄	3.13×10 ¹	28.24	1.99×10 ¹⁷	Р	
La0.75%-MgCo ₂ O ₄	1.04×10^{2}	30.02	8.43×10 ¹⁶	Р	
La0.5%-MgCo ₂ O ₄	1.50×10^{2}	30.41	4.17×10 ¹⁶	Р	
MgCo ₂ O ₄	1.69×10 ²	121.46	3.68×10 ¹⁶	Р	

Table S3 The carrier concentration and P/N type of pure $MgCo_2O_4$ and $Lax-MgCo_2O_4$

(x=0.5%, 0.75%, 1% and 2%).

Fig. S5 TG curves of the AP thermal decomposition with and without pure $\mathrm{MgCo_2O_4}$ and

Lax-MgCo₂O₄ (x=0.5%, 0.75%, 1% and 2%).

Fig. S6 DSC curves at the different heating rate (10, 20, 30, 40 °C·min⁻¹): (a) Pure AP, (b) 2%

pure $MgCo_2O_4 + AP$, (c) 2%La1%- $MgCo_2O_4 + AP$, respectively.

Fig. S7 TG curves at the different heating rate (10, 20, 30, 40 °C·min⁻¹): (a) Pure AP, (b) 2%

pure $MgCo_2O_4 + AP$, (c) 2%La1%-MgCo₂O₄ + AP, respectively.

Fig. S8 Linear fit curve to TG analysis using Friedman method (α increments of 0.1): (a) Pure AP, (b) 2% pure MgCo₂O₄ + AP, (c) 2%La1%-MgCo₂O₄ + AP, respectively.

Conversion	Friedman method (E_{aF} , kJ·mol ⁻¹)			
(α)				
	Pure AP	$2\% Mg Co_2 O_4 + \\$	2%La1%-MgCo ₂ O ₄ +	
		AP	AP	
0.1	199.54	166.28	157.98	
0.2	221.38	186.81	160.02	
0.3	228.81	188.89	161.29	
0.4	236.42	190.25	162.95	
0.5	249.76	191.46	161.87	
0.6	272.13	180.68	165.46	
0.7	284.64	188.52	170.43	
0.8	295.87	181.99	178.75	
0.9	300.28	184.56	187.07	

 Table S4 TG kinetic results calculated by Friedman method.

	М	ß	Decrease	Decrease	Increase	Refs.
Samples	1VI 0/2	ρ °C·min ⁻¹	of T_{HTD}	of E_a	of k	
		Cillin	(°C)	$(kJ \cdot mol^{-1})$	(s ⁻¹)	
Flower-like Ni	3	10	70.00	-	-	[52]
Nanosheets Co ₃ O ₄	2	20	132.30	57.9	-	[11]
3DOM Fe ₂ O ₃ /Co ₃ O ₄	1	20	49.94	61.1	-	[17]
Co ₃ O ₄ @MnO ₂	2	10	112.00	-	-	[53]
Nanoparticles CoFe ₂ O ₄	3	20	89.50	16.15	0.08	[54]
Hollow NiCo ₂ O ₄	1	20	49.94	-	-	[18]
Nano FeCo ₂ O ₄	2	20	196.25	93.70	1.20	[27]
MXene/ZnCo ₂ O ₄	2	20	132.00	111.7	-	[55]
Nanosheets La1%-	2	20	215.16	120.39	3.62	This work
MgCo ₂ O ₄						

 Table S5 Comparison of catalytic activity of AP by various catalysts.

Fig. S9 Laser ignited combustion of (a(i)) AP/HTPB, (a(ii)) La1%-MgCo₂O₄-AP/HTPB (Ignition voltage is 22 V); (b(i)) AP/HTPB, (b(ii)) La1%-MgCo₂O₄-AP/HTPB (Ignition voltage is 34 V); (c(i)) AP/HTPB, (c(ii)) La1%-MgCo₂O₄-AP/HTPB (Ignition voltage is 46

V).