Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Efficient Urea Formation from N₂O+CO on Dual-Atom Catalysts TM₂/g-CN

Zebin Ren, Xinxin Wang, Shuhua Wang, Haona Zhang, Baibiao Huang, Ying Dai*

and Wei Wei*

School of Physics, State Key Laboratory of Crystal Materials, Shandong University,

Jinan 250100, China

* Corresponding authors: <u>daiy60@sdu.edu.cn</u> (Y. Dai), <u>weiw@sdu.edu.cn</u> (W. Wei)

Enzymatic	Consecutive
$N_2O(g) + * \rightarrow *N_2O$	$N_2O(g) + * \rightarrow *N_2O$
$*N_2O + H^+ + e^- \rightarrow *NNOH$	$N_2O + H^+ + e^- \rightarrow NNOH$
*NNOH + H ⁺ + $e^- \rightarrow$ *NN + H ₂ O (g)	*NNOH + H ⁺ + e ⁻ \rightarrow *NN + H ₂ O (g)
$*NN + H^+ + e^- \rightarrow *NNH$	$*NN + H^+ + e^- \rightarrow *NNH$
$*NNH + H^+ + e^- \rightarrow *NHNH$	$*NNH + H^+ + e^- \rightarrow *NNH_2$
$*NHNH + H^+ + e^- \rightarrow *NHNH_2$	$*NNH_2 + H^+ + e^- \rightarrow *N + NH_3 (g)$
$*NHNH_2 + H^+ + e^- \rightarrow *NH_2NH_2$	$N + H^+ + e^- \rightarrow NH$
$*\mathrm{NH}_2\mathrm{NH}_2 + \mathrm{H}^+ + \mathrm{e}^- \rightarrow *\mathrm{NH}_2 + \mathrm{NH}_3(\mathrm{g})$	$*NH + H^+ + e^- \rightarrow *NH_2$
$*NH_2 + H^+ + e^- \rightarrow *NH_3$	$*NH_2 + H^+ + e^- \rightarrow *NH_3$
$*NH_3 \rightarrow * + NH_3 (g)$	$*NH_3 \rightarrow * + NH_3 (g)$
Mixed 1	Mixed 2
$\frac{\text{Mixed 1}}{N_2 O(g) + * \rightarrow *N_2 O}$	Mixed 2 $N_2O(g) + * \rightarrow *N_2O$
$\begin{array}{c} \textbf{Mixed 1} \\ \\ N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \end{array}$	Mixed 2 $N_2O(g) + * \rightarrow *N_2O$ $*N_2O + H^+ + e^- \rightarrow *NNOH$
$\begin{array}{c} \textbf{Mixed 1} \\ \hline N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \end{array}$	$\begin{array}{c} \textbf{Mixed 2} \\ & N_2O~(g) + * \rightarrow *N_2O \\ & *N_2O + H^+ + e^- \rightarrow *NNOH \\ & *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ & N_2O~(g) + * \rightarrow *N_2O \\ & *N_2O + H^+ + e^- \rightarrow *NNOH \\ & *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ & *NN + H^+ + e^- \rightarrow *NNH \end{array}$	$\begin{array}{c} \textbf{Mixed 2} \\ & N_2O~(g) + * \rightarrow *N_2O \\ & *N_2O + H^+ + e^- \rightarrow *NNOH \\ & *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ & *NN + H^+ + e^- \rightarrow *NNH \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ \hline N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ *NN + H^+ + e^- \rightarrow *NNH \\ *NNH + H^+ + e^- \rightarrow *NNH_2 \end{array}$	$\begin{array}{c} \textbf{Mixed 2} \\ & N_2O~(g) + * \rightarrow *N_2O \\ & *N_2O + H^+ + e^- \rightarrow *NNOH \\ & *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ & *NN + H^+ + e^- \rightarrow *NNH \\ & *NNH + H^+ + e^- \rightarrow *NHNH \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ & N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ & *NN + H^+ + e^- \rightarrow *NNH \\ & *NNH + H^+ + e^- \rightarrow *NNH_2 \\ & *NNH_2 + H^+ + e^- \rightarrow *NHNH_2 \end{array}$	$\begin{array}{c} \text{Mixed 2} \\ & \text{N}_2\text{O} (g) + * \rightarrow *\text{N}_2\text{O} \\ & *\text{N}_2\text{O} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNOH} \\ & *\text{NNOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} + \text{H}_2\text{O} (g) \\ & *\text{NN} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} \\ & *\text{NNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH} \\ & *\text{NHNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH} \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ \hline N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ *NN + H^+ + e^- \rightarrow *NNH \\ *NNH + H^+ + e^- \rightarrow *NNH_2 \\ *NNH_2 + H^+ + e^- \rightarrow *NHNH_2 \\ *NHNH_2 + H^+ + e^- \rightarrow *NH_2NH_2 \end{array}$	$\begin{array}{c} \text{Mixed 2} \\ & \text{N}_2\text{O}(g) + * \rightarrow *\text{N}_2\text{O} \\ & *\text{N}_2\text{O} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNOH} \\ & *\text{NNOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NN} + \text{H}_2\text{O}(g) \\ & *\text{NN} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} \\ & *\text{NNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH} \\ & *\text{NHNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH}_2 \\ & *\text{NHNH}_2 + \text{H}^+ + \text{e}^- \rightarrow *\text{NH} + \text{NH}_3(g) \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ & N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ & *NN + H^+ + e^- \rightarrow *NNH \\ & *NNH + H^+ + e^- \rightarrow *NNH_2 \\ & *NNH_2 + H^+ + e^- \rightarrow *NH_2NH_2 \\ & *NHNH_2 + H^+ + e^- \rightarrow *NH_2NH_2 \\ & *NH_2NH_2 + H^+ + e^- \rightarrow *NH_2 + NH_3(g) \end{array}$	$\begin{array}{c} \text{Mixed 2} \\ & \text{N}_2\text{O}(g) + * \rightarrow *\text{N}_2\text{O} \\ & *\text{N}_2\text{O} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNOH} \\ & *\text{NNOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NN} + \text{H}_2\text{O}(g) \\ & *\text{NN} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} \\ & *\text{NNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH} \\ & *\text{NHNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH}_2 \\ & *\text{NHNH}_2 + \text{H}^+ + \text{e}^- \rightarrow *\text{NH} + \text{NH}_3(g) \\ & *\text{NH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NH}_2 \end{array}$
$\begin{array}{c} \textbf{Mixed 1} \\ & N_2O~(g) + * \rightarrow *N_2O \\ *N_2O + H^+ + e^- \rightarrow *NNOH \\ *NNOH + H^+ + e^- \rightarrow *NN + H_2O~(g) \\ *NN + H^+ + e^- \rightarrow *NNH \\ *NNH + H^+ + e^- \rightarrow *NNH_2 \\ *NNH_2 + H^+ + e^- \rightarrow *NHNH_2 \\ *NHNH_2 + H^+ + e^- \rightarrow *NH_2NH_2 \\ *NH_2NH_2 + H^+ + e^- \rightarrow *NH_2 + NH_3(g) \\ *NH_2 + H^+ + e^- \rightarrow *NH_3 \end{array}$	$\begin{array}{c} \text{Mixed 2} \\ & \text{N}_2\text{O}(g) + * \rightarrow *\text{N}_2\text{O} \\ *\text{N}_2\text{O} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNOH} \\ *\text{NNOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} \\ *\text{NNOH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NNH} \\ *\text{NNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH} \\ *\text{NHNH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NHNH}_2 \\ *\text{NHNH}_2 + \text{H}^+ + \text{e}^- \rightarrow *\text{NH} + \text{NH}_3(g) \\ & *\text{NH} + \text{H}^+ + \text{e}^- \rightarrow *\text{NH}_2 \\ & *\text{NH}_2 + \text{H}^+ + \text{e}^- \rightarrow *\text{NH}_3 \end{array}$

Table S1 Elementary reactions for the considered pathways for $N_2O \rightarrow NH_3$ process.

Table S2 Calculated binding energy (E_b) of transition metal (TM) atoms on *g*-CN and cohesive energy (E_{coh}) of TM atoms. E_b is calculated by $E_b = (E_{DACs} - E_{g-CN} - 2E_M)/2$, where E_{DACs} , E_{g-CN} and E_M are the energies of DACs, pure *g*-CN and metal atoms, respectively. E_{coh} is looked up in the KnowledgeDoor database.

TM_2/g -CN	$E_{\rm b}({\rm eV})$	$E_{\rm coh}({\rm eV})$	TM_2/g -CN	$E_{\rm b}({\rm eV})$	$E_{\rm coh}({\rm eV})$
Ti ₂ /g-CN	-6.34	-4.85	Rh ₂ /g-CN	-5.39	-5.75
V_2/g -CN	-6.08	-5.31	Pd ₂ /g-CN	-3.41	-3.89
Cr ₂ /g-CN	-4.21	-4.1	Ag ₂ /g-CN	-1.75	-2.95
Mn_2/g -CN	-3.49	-2.92	Cd ₂ /g-CN	-0.79	-1.16
Fe ₂ /g-CN	-4.41	-4.28	Hf ₂ /g-CN	-6.26	-6.44
Co ₂ /g-CN	-4.62	-4.39	Ta ₂ /g-CN	-8.12	-8.10
Ni ₂ /g-CN	-4.92	-4.44	W ₂ /g-CN	-9.01	-8.90
Cu ₂ /g-CN	-2.99	-3.49	Re ₂ /g-CN	-9.07	-8.03
Zn ₂ /g-CN	-1.46	-1.35	Os ₂ /g-CN	-6.88	-8.17
Zr ₂ /g-CN	-6.22	-6.25	Ir ₂ /g-CN	-6.39	-6.94

Nb ₂ /g-CN	-6.86	-7.57	Pt ₂ /g-CN	-5.36	-5.84
Mo ₂ /g-CN	-6.18	-6.82	Au ₂ /g-CN	-1.80	-3.81
Ru ₂ /g-CN	-6.91	-6.74			

Table S3 Free energy change of adsorbed NCON (ΔG_{*NCON}) on TM₂/g-CN and transferred charge from TM₂/g-CN to adsorbed NCON.

TM ₂ /g-CN	$\Delta G_{ m *NCON} ({ m eV})$	Charge (e ⁻)
Ti ₂ /g-CN	-4.04	1.64
Cr ₂ /g-CN	-2.29	1.23
Mn ₂ /g-CN	-2.64	1.18
Fe ₂ /g-CN	-2.02	1.10
Co ₂ /g-CN	-1.99	1.20
W ₂ /g-CN	-4.96	1.41
Re ₂ /g-CN	-3.87	1.27

Table S4 Free energy change of adsorbed NCOHN (ΔG_{*NCOHN}) and NCONH (ΔG_{*NCOHH}) on TM₂/g-CN. The unit is eV.

$TM_2/g-CN$	$\Delta G_{*\text{NCOHN}}$	$\Delta G_{*\text{NCONH}}$
Ti ₂ /g-CN	-4.27	-4.95
Cr ₂ /g-CN	-3.00	-3.32
Mn ₂ /g-CN	-3.30	-3.59
Fe ₂ /g-CN	-3.26	-3.73
$Co_2/g-CN$	-2.61	-3.10
W ₂ /g-CN	-5.28	-5.68
Re ₂ /g-CN	-4.30	-4.75

TM_2/g -CN	ΔG_1	ΔG_2	ΔG_3	ΔG_4	ΔG_5	ΔG_6
Ti ₂ /g-CN	-1.94	0.41	-0.91	0.14/0.38	-0.18/-0.41	-0.20
Cr ₂ /g-CN	-0.54	-1.61	-1.03	-0.70/-1.23	-0.74-0.21	0.19
Mn ₂ /g-CN	-0.36	-1.86	-0.95	-0.28-0.97	-1.35/-0.66	0.28
Fe ₂ /g-CN	-1.92	-0.19	-1.71	-0.84/-0.64	-0.45/-0.65	-0.20
Co ₂ /g-CN	0.15	-2.40	-1.11	-0.05/-0.73	-1.44/-0.77	-0.40
W_2/g -CN	-0.15	-1.54	-0.72	-0.33-0.80	-0.28/0.19	0.87
Re ₂ /g-CN	-0.13	-1.23	-0.88	0.01/-0.63	-0.58/0.05	0.48

Table S5 Free energy change of six protonation steps in the urea synthesis process bydistal/alternative pathway on TM_2/g -CN. The unit is eV.

TM_2/g -CN	$\Delta G_{ m *_{NCON}}$ (eV)	$U_{\rm L}$ (V)
Ti ₂ /g-CN	-4.04	-0.41
Cr_2/g -CN	-2.29	-0.19
Mn ₂ /g-CN	-2.64	-0.28
Fe ₂ /g-CN	-2.02	/
Co ₂ /g-CN	-1.99	-0.15
W_2/g -CN	-4.96	-0.87
Re ₂ /g-CN	-3.87	-0.48

Table S6 Free energy change of adsorbed NCON ($\Delta G_{*_{\text{NCON}}}$) and the limiting potential (U_{L}) of urea synthesis on TM₂/g-CN.

Fig. S1 Variations of temperature and energy against time from AIMD simulations for TM_2/g -CN. Insets are structure snapshots of TM_2/g -CN at 500 K after 10 ps AIMD simulations.

Fig. S2 Band structures of TM_2/g -CN. The Fermi level is set to zero.

Fig. S3 Adsorption configuration of N₂O on dual-TM atom active centers. N₂O adsorption energy (E_{ads}) is marked.

Fig. S4 (a) Gibbs free energy diagram for the urea synthesis on Ti_2/g -CN at zero (blue line) and applied potential (orange line) through distal mechanism. (b) Corresponding adsorption configurations of reaction intermediates.

Fig. S5 (a) Gibbs free energy diagram for the urea synthesis on Mn_2/g -CN at zero (blue line) and applied potential (orange line) through alternative mechanism. (b) Corresponding adsorption configurations of reaction intermediates.

Fig. S6 (a) Gibbs free energy diagram for the urea synthesis on W_2/g -CN at zero (blue line) and applied potential (orange line) through alternative mechanism. (b) Corresponding adsorption configurations of reaction intermediates.

Fig. S7 (a) Gibbs free energy diagram for the urea synthesis on Re_2/g -CN at zero (blue line) and applied potential (orange line) through alternative mechanism. (b) Corresponding adsorption configurations of reaction intermediates.

Fig. S8 Gibbs free energy difference between N₂O and H adsorption ($\Delta G = \Delta G_{*N2O} - \Delta G_{*H}$) on TM₂/g-CN.