Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2023

Supporting Information

Sucrose-derived hard carbon wrapped by reduced graphene oxide

for high-performance anode of sodium-ion batteries

Shengyuan Li,¹ Hong Yuan,¹ Chuanren Ye,¹ Yizhe Wang,¹ Long Wang,² Kun Ni,^{1,*} and Yanwu Zhu,^{1,3,*}

¹ Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

² Fu'an Guolong Nano Material, Co. Ltd, Ningde, Fujian 352000, P. R. China

³ Hefei National Research Center for Physical Sciences at the Microscale,

University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

*Corresponding Authors: zhuyanwu@ustc.edu.cn (Y. Zhu); nikun@ustc.edu.cn (K. Ni)

Figure S1. DSC results of N-HC, N-rGO and N-HC/rGO.

Figure S2. Fitting of XRD (002) peak of (a) N-HC and (b) N-HC/rGO.

Figure S3. EDS elemental mappings of (a-e) N-HC and (f-j) N-HC/rGO.

Figure S4. (a) XPS survey spectra of N-HC and N-HC/rGO. XPS spectra of S 2*p* of (b) N-HC and (c) N-HC/rGO.

Figure S5. (a) N_2 adsorption/desorption and (d) CO_2 adsorption measurements of N-HC-3h sample; SSA and pore size distribution determined by NLDFT calculation of (b) N_2 adsorption/desorption and (e) CO_2 adsorption measurements; Pore size distribution determined by NLDFT calculation for (c) N_2 adsorption/desorption and (f) CO_2 adsorption measurements.

Figure S6. (a) N_2 adsorption/desorption and (b) corresponding pore size distribution by NLDFT calculation of N-rGO.

Figure S7. Electrochemical performance of N-rGO electrode. (a) CV curves at different scan rates; Cycling test of N-rGO electrode at (b) 0.1 and (c) 1.0 A g^{-1} .

Figure S8. CV curves of (a) N-HC and (b) N-HC/rGO; Cycling test at (c) 0.1 A g^{-1} and (d) 1.0 A g^{-1} of N-HC and N-HC/rGO, respectively.

Figure S9. Cycling performance of N-HC-3h electrode at (a) 0.1 and (b) 1.0 A g^{-1} .

Figure S10. In-situ XRD result of N-HC/rGO electrode when discharged at 0.1 A g^{-1} .

Figure S11. Electrochemical performance of NVP electrode. (a) Rate capability at various current densities from 0.02 to 2.0 A g^{-1} ; (b) Cycling performances at 0.1 and 1.0 A g^{-1} ; SEM images of NVP (c) before cycling and (d) after cycling at 0.1 A g^{-1} after 50 cycles.

Figure S12. Electrochemical performance of N-HC/rGO//NVP full cell. (a) CV curves at various sweep rates from 0.1 to 1.0 mV s⁻¹; (b) Rate capability at various current densities from 0.01 to 0.1 A g^{-1} .

Table S1	l. XPS	data of	N-HC	and N-	HC/rGO	sample	s.

		N-HC	N-HC/rGO
	C–C	34.0%	40.8%
С	C=C	35.8%	22.4%
	C–N	17.7%	24.0%
	С-О	7.4%	6.3%
	С=О	5.1%	6.5%
	Pyridinic-N	28.7%	41.5%
Ν	Pyrrolic-N	43.5%	42.2%
	Quaternary-N	27.8%	16.3%
	O=C	30.1%	38.6%
0	O–C	51.4%	50.7%
	О=С-ОН	18.5%	10.7%
С (.	Atomic %)	89.32%	93.28%
N (Atomic %)		7.94%	4.15%
O (Atomic %)		2.73%	2.58%

Materials	Electrolytes Rate Capability		Cycle performance and Capacity retain	ICE [%]	Ref.	
N-HC/rGO	1 M NaPFe	355.5 mA h g ⁻¹ at 50 mA g ⁻¹ ; 321.9 mA h g ⁻¹ at 100 mA g ⁻¹ ; 266.8 mA h g ⁻¹ at 1000 mA g ⁻¹ ;	407.3 mA h g ⁻¹ after 100 cycles at 10 mA g ⁻¹ , ~78.7%; 261.4 mA h g ⁻¹ after 500 cycles at 100 mA g ⁻¹ , ~84%; 190.5 mA h g ⁻¹ after 1500 cycles at 1000 mA g ⁻¹ , ~80.7%;	84.7	This	
N-НС	in DEGDME	284 mA h g ⁻¹ at 50 mA g ⁻¹ ; 273.9 mA h g ⁻¹ at 100 mA g ⁻¹ ; 157.4 mA h g ⁻¹ at 1000 mA g ⁻¹ ;	199.1 mA h g ⁻¹ after 100 cycles at 10 mA g ⁻¹ , ~56.7%; 120.2 mA h g ⁻¹ after 500 cycles at 100 mA g ⁻¹ , ~51.2%; 105.8 mA h g ⁻¹ after 1500 cycles at 1000 mA g ⁻¹ , ~47.9%;	75.1	75.1 work	
Corn cob derived HC	0.6 M NaPF ₆ in EC/DEC	$\begin{array}{l} 360 \text{ mA h } g^{-1} \text{ at } 30 \text{ mA } g^{-1}1; \\ 288 \text{ mA h } g^{-1} \text{ at } 150 \text{ mA } g^{-1}; \\ 211 \text{ mA h } g^{-1} \text{ at } 600 \text{ mA } g^{-1}; \end{array}$	275 mA h g ⁻¹ after 100 cycles at 60 mA g ⁻¹ , ~97%	86	[1]	
Shaddock peel derived HC	1 M NaClO ₄ in EC/DEC	430.5 mA h g ⁻¹ at 30 mA g ⁻¹ ; 373.5 mA h g ⁻¹ at 50 mA g ⁻¹ ; 317.7 mA h g ⁻¹ at 100 mA g ⁻¹ ;	352 mA h g ⁻¹ after 200 cycles at 50 mA g ⁻¹ , ~97.5%	67.7	[2]	
Lotus seedpod derived HC	1 M NaClO ₄ in PC with 2% FEC	330.6 mA h g^{-1} at 50 mA g^{-1} ; 288.9 mA h g^{-1} at 100 mA g^{-1} ; 78.3 mA h g^{-1} at 1000 mA g^{-1} ;	295 mA h g ⁻¹ after 200 cycles at 50 mA g ⁻¹ , ~89.7%; 161.5 mA h g ⁻¹ after 500 cycles at 200 mA g ⁻¹ , ~80%;	50.4	[3]	
Wood fiber derived HC	1 M NaClO ₄ in EC/DEC	260 mA h g^{-1} at 100 mA g $^{-1}$;	196 mA h g^{-1} after 200 cycles at 100 mA g^{-1} , ~100%;	72	[4]	
N-doped PVP derived HC	1 M NaClO ₄ in PC	304 mA h g ⁻¹ at 20 mA g ⁻¹ ; 209 mA h g ⁻¹ at 100 mA g ⁻¹ ; 70 mA h g ⁻¹ at 1000 mA g ⁻¹ ;	255 mA h g ⁻¹ after 100 cycles at 20 mA g ⁻¹ , ~94%;	47.7	[5]	
S-doped mesophase pitch derived HC	1 M NaClO ₄ in EC/DEC	420 mA h g^{-1} at 50 mA g^{-1} ; 340 mA h g^{-1} at 100 mA g^{-1} ; 217 mA h g^{-1} at 1000 mA g^{-1} ;	$\begin{array}{c} 320 \text{ mA h } g^{-1} \text{ after } 100 \text{ cycles} \\ \text{ at } 100 \text{ mA } g^{-1}; \\ 200 \text{ mA h } g^{-1} \text{ after } 1000 \text{ cycles} \\ \text{ at } 4000 \text{ mA } g^{-1}, \sim 100\%; \end{array}$	56	[6]	
P-doped sucrose derived HC	1 M NaPF ₆ in EC/DEC	359 mA h g ⁻¹ at 20 mA g ⁻¹ ; ~250 mA h g ⁻¹ at 100 mA g ⁻¹ ; ~60 mA h g ⁻¹ at 1000 mA g ⁻¹ ;	200 mA h g ⁻¹ after 150 cycles at 40 mA g ⁻¹ , ~85%;	73	[7]	
P-doped PVP derived HC	1 M NaClO ₄ in EC/DEC with 2% FEC	$\begin{array}{c} 384.5 \text{ mA h } g^{-1} \text{ at } 20 \text{ mA } g^{-1}; \\ 320.1 \text{ mA h } g^{-1} \text{ at } 100 \text{ mA } g^{-1}; \\ 134.6 \text{ mA h } g^{-1} \text{ at } 1000 \text{ mA } g^{-1}; \end{array}$	386.4 mA h g ⁻¹ after 100 cycles at 20 mA g ⁻¹ , ~98.2%;	45	[8]	
Chitosan derived HC	1 M NaPF ₆ in DME	275.4 mA h g ⁻¹ at 50 mA g ⁻¹ ; 206 mA h g ⁻¹ at 2000 mA g ⁻¹ ; 139 mA h g ⁻¹ at 10000 mA g ⁻¹ 1;	~250 mA h g^{-1} after 300 cycles at 50 mA g^{-1} ; 196 mA h g^{-1} after 2000 cycles at 1000 mA g^{-1} , ~90%;	85.9	[9]	
Loofah sponge derived HC	1 M NaCF ₃ SO ₃ in DEGDME	320 mA h g ⁻¹ at 30 mA g ⁻¹ ; 217 mA h g ⁻¹ at 900 mA g ⁻¹ ; 210 mA h g ⁻¹ at 1500 mA g ⁻¹ ;	250 mA h g ⁻¹ after 100 cycles at 150 mA g ⁻¹ , ~93%;	63	[10]	

Cotton derived HC	0.8 M NaPF ₆ in EC/DEC	315 mA h g^{-1} at 30 mA g^{-1} ; 275 mA h g^{-1} at 150 mA g^{-1} ; 180 mA h g^{-1} at 300 mA g^{-1} ;	$\begin{array}{c} 30 \text{ mA } \text{g}^{-1};\\ 150 \text{ mA } \text{g}^{-1};\\ 300 \text{ mA } \text{g}^{-1}; \end{array} \qquad \begin{array}{c} 305 \text{ mA } \text{h } \text{g}^{-1} \text{ after } 100 \text{ cycles}\\ \text{at } 30 \text{ mA } \text{g}^{-1}, \sim 97\%; \end{array}$		[11]
Pomelo peels	1 m NaClO ₄ in EC/PC	$ \begin{array}{c} 278.8 \text{ mA h } g^{-1} \text{ at } 50 \text{ mA } g^{-1}; \\ 207.8 \text{ mA h } g^{-1} \text{ at } 100 \text{ mA } g^{-1}; \\ 118.4 \text{ mA h } g^{-1} \text{ at } 1000 \text{ mA } g^{-1}; \\ 71 \text{ mA h } g^{-1} \text{ at } 5000 \text{ mA } g^{-1}; \end{array} \begin{array}{c} 181 \text{ mA h } g^{-1} \text{ after } 220 \text{ cycles} \\ \text{ at } 200 \text{ mA } g^{-1}, \sim 84.6\%; \end{array} $		27	[12]
Sucrose	1 M NaClO ₄ in EC/DEC	300 mA h g ⁻¹ at 30 mA g ⁻¹ ; 240 mA h g ⁻¹ at 60 mA g ⁻¹ ; 100 mA h g ⁻¹ at 150 mA g ⁻¹ ;	222 mA h g ⁻¹ after 100 cycles at 30 mA g ⁻¹ , ~80%;	83	[13]
Sucrose/GO	1 M NaClO ₄ in EC/DEC	200 mA h g^{-1} at 40 mA g^{-1} ; 150 mA h g^{-1} at 100 mA g^{-1} ; 50 mA h g^{-1} at 500 mA g^{-1} ; 25 mA h g^{-1} at 1000 mA g^{-1} ;	274 mA h g ⁻¹ after 195 cycles at 20 mA g ⁻¹ , ~90.6%;	83	[14]
Rice husk	1 M NaClO ₄ in EC/DEC	265 mA h g^{-1} at 500 mA g^{-1} ; 166 mA h g^{-1} at 1000 mA g^{-1} ;	346 mA h g ⁻¹ after 100 cycles at 25 mA g ⁻¹ , ~93%;	66	[15]
Sucrose	0.8 M NaPF ₆ in EC/DEC; 0.8 M NaPF ₆ in DEGDME	$ \begin{array}{c} 215/250 \text{ mA h } g^{-1} \text{ at } 0.1 \text{ A } g^{-1}; \\ 100/220 \text{ mA h } g^{-1} \text{ at } 0.5 \text{ A } g^{-1}; \\ 80/200 \text{ mA h } g^{-1} \text{ at } 1.0 \text{ A } g^{-1}; \\ \end{array} \begin{array}{c} 240 \text{ mA h } g^{-1} \text{ after } 150 \text{ cycles} \\ \text{ at } 50 \text{ mA } g^{-1}, \sim 100\%; \\ 230 \text{ mA h } g^{-1} \text{ after } 150 \text{ cycles} \\ \text{ at } 50 \text{ mA } g^{-1}, \sim 93.7\%; \\ \end{array} $		70.9 83.8	[16]
Lotus stems	1 M NaClO ₄ in EC/DEC	$ \begin{array}{c} 351 \text{ mA h } g^{-1} \text{ at } 40 \text{ mA } g^{-1}; \\ 290 \text{ mA h } g^{-1} \text{ at } 100 \text{ mA } g^{-1}; \\ 240 \text{ mA h } g^{-1} \text{ at } 200 \text{ mA } g^{-1}; \\ 150 \text{ mA h } g^{-1} \text{ at } 500 \text{ mA } g^{-1}; \\ \end{array} \begin{array}{c} 330 \text{ mA h } g^{-1} \text{ after } 450 \text{ cycles} \\ \text{ at } 100 \text{ mA } g^{-1}, \sim 94\%; \\ \end{array} $		70	[17]
Poplar wood	1 M NaPF ₆ in EC/DMC	310 mA h g ⁻¹ at 60 mA g ⁻¹ ; 290 mA h g ⁻¹ at 150 mA g ⁻¹ ; 180 mA h g ⁻¹ at 300 mA g ⁻¹ ;	330 mA h g ⁻¹ after 100 cycles at 30 mA g ⁻¹ ;	88.3	[18]
Expanded HC	1 M NaClO ₄ PC, 5% FEC	$ \begin{array}{c} 298.7 \text{ mA h } g^{-1} \text{ at } 20 \text{ mA } g^{-1}; \\ 236.5 \text{ mA h } g^{-1} \text{ at } 100 \text{ mA } g^{-1}; \\ 146.7 \text{ mA h } g^{-1} \text{ at } 1000 \text{ mA } g^{-1}; \\ 146.7 \text{ mA h } g^{-1} \text{ at } 1000 \text{ mA } g^{-1}; \\ \end{array} \begin{array}{c} 298 \text{ mA h } g^{-1} \text{ after } 100 \text{ cycles} \\ \text{ at } 100 \text{ mA } g^{-1}, \sim 99\%; \\ 132 \text{ mA h } g^{-1} \text{ after } 500 \text{ cycles} \\ \text{ at } 500 \text{ mA } g^{-1}, \sim 89.8\%; \\ \end{array} $		67.3	[19]

References:

[1] P. Liu, Y. Li, Y. S. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A 2016, 4, 13046–13052.

[2] N. Sun, H. Liu, B. Xu, J. Mater. Chem. A 2015, 3, 20560-20566.

[3] F. Wu, M. Zhang, Y. Bai, X. Wang, R. Dong, C. Wu, ACS Appl. Mater. Interfaces 2019, 11, 12554– 12561.

[4] F. Shen, H. Zhu, W. Luo, J. Wan, L. Zhou, J. Dai, B. Zhao, X. Han, K. Fu, L. Hu, *ACS Appl. Mater. Interfaces* **2015**, *7*, 23291–23296.

[5] Y. Bai, Y. Liu, Y. Li, L. Ling, F. Wu, C. Wu, RSC Adv., 2017, 7, 5519-5527.

[6] Z. Hong, Y. Zhen, Y. Ruan, M. Kang, K. Zhou, J. M. Zhang, Z. Huang, M. Wei, *Adv. Mater.*, **2018**, *30*, 1802035.

[7] Z. Li, L. Ma, T. W. Surta, C. Bommier, Z. Jian, Z. Xing, W. F. Stickle, M. Dolgos, K. Amine, J. Lu,

T. Wu, X. Ji, ACS Energy Lett., 2016, 1, 395–401.

[8] Y. Li, Y. Yuan, Y. Bai, Y. Liu, Z. Wang, L. Li, F. Wu, K. Amine, C. Wu, J. Lu, *Adv. Energy Mater.*, 2018, *8*, 1702781.

[9] Y. He, P. Bai, S. Gao, Y. Xu, ACS Appl. Mater. Interfaces 2018, 10, 41380–41388.

[10] Y. E. Zhu, L. Yang, X. Zhou, F. Li, J. Wei, Z. Zhou, J. Mater. Chem. A 2017, 5, 9528–9532.

[11] P. Bai, Y. He, P. Xiong, X. Zhao, K. Xu, Y. Xu, Energy Storage Mater., 2018, 13, 274.

[12] Y. Li, Y. S. Hu, M. M. Titirici, L. Chen, X. Huang, Adv. Energy Mater., 2016, 6, 1600659.

[13] K. L. Hong, L. Qie, R. Zeng, Z. Q. Yi, W. Zhang, D. Wang, W. Yin, C. Wu, Q. J. Fan, W. X. Zhang, Y. H. Huang, *J. Mater. Chem. A* 2014, *2*, 12733.

[14] Y. Li, S. Xu, X. Wu, J. Yu, Y. Wang, Y. S. Hu, H. Li, L. Chen, X. Huang, J. Mater. Chem. A 2015, 3, 71.

[15] W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J. J. Lee, X. Ji, ACS Appl. Mater. Interfaces 2015, 7, 2626.

[16] Q. Wang, X. Zhu, Y. Liu, Y. Fang, X. Zhou, J. Bao, Carbon 2018, 127, 658.

[17] N. Zhang, Q. Liu, W. Chen, M. Wan, X. Li, L. Wang, L. Xue, W. Zhang, J. Power Sources 2018, 378, 331.

[18] Y. Zheng, Y. Lu, X. Qi, Y. Wang, L. Mu, Y. Li, Q. Ma, J. Li, Y. S. Hu, *Energy Storage Mater.*, **2018**, *18*, 269.

[19] Z. Zhu, F. Liang, Z. Zhou, X. Zeng, D. Wang, P. Dong, J. Zhao, S. Sun, Y. Zhang, X. Li, J. Mater. Chem. A 2018, 6, 1513.