## **Supporting Information**

A Sillén Oxyhalide SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> as a Promising Photocatalyst for Water Splitting: Impact of the Asymmetric Structure on Light Absorption and Charge Carrier Dynamics

Hajime Suzuki,<sup>a</sup> Daichi Ozaki,<sup>a</sup> Yusuke Ishii,<sup>a</sup> Osamu Tomita,<sup>a</sup> Daichi Kato,<sup>a</sup> Shunsuke Nozawa,<sup>b</sup> Kouichi Nakashima,<sup>c</sup> Akinori Saeki,<sup>d</sup> Hiroshi Kageyama,<sup>a</sup> Ryu Abe<sup>a,\*</sup>

- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
- b. Photon Factory (PF), Institute of Materials Structure Science (IMSS), High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
- c. Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- d. Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- <sup>†</sup> H. S. and D. O. contributed equally to this work.

| Atom   | Site       | x | У   | z              | g             | 100 <i>U</i> / Ų |
|--------|------------|---|-----|----------------|---------------|------------------|
| Bi/Sr2 | 4 <i>e</i> | 0 | 0   | Bi: 0.3432(10) | Bi: 0.528(2)  | 1.54(6)          |
|        |            |   | 0   | Sr: 0.3287(3)  | Sr: 0.472 (2) |                  |
| Bi/Sr1 | 4 <i>e</i> | 0 | 0   | Bi: 0.07170(8) | Bi: 0.972(2)  | 1.76(4)          |
|        |            |   | 0   | Sr: 0.080(6)   | Sr: 0.028(2)  |                  |
| Cl2    | 4e         | 0 | 0   | 0.2100(3)      | 1             | 1.1(13)          |
| Cl1    | 2b         | 0 | 0   | 1/2            | 1             | 1.1(13)          |
| 01     | 8g         | 0 | 1/2 | 0.1114(5)      | 1             | 1.1(13)          |

Table S1 Final refined structure parameters for SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub><sup>a</sup>

<sup>*a*</sup>Space group *I*4/*mmm* (#139), tetragonal, a = b = 3.93319(4) Å, c = 27.0186(6) Å, V = 417.98(11) Å<sup>3</sup>.

Table S2 Bond valence sum of Bi and Sr in Bi/Sr1 and Bi/Sr2 sites.

| Atom         | Bond valence sum |
|--------------|------------------|
| Bi in Bi/Sr1 | 3.03             |
| Bi in Bi/Sr2 | 2.88             |
| Sr in Bi/Sr1 | 3.93             |
| Sr in Bi/Sr2 | 2.41             |

**Table S3** Rate constants and lifetimes obtained from the fitting of the TRMC kinetics (Figure S16). The effective lifetime ( $\tau_{eff}$ ) was calculated using  $\tau_{eff} = (A_1 + A_2)(A_1k_1 + A_2k_2)^{-1}$ . The maximum signal intensity of TRMC transients (Figure 8) ( $\varphi \Sigma \mu_{max}$ ) and the product of  $\varphi \Sigma \mu_{max}$  and  $\tau_{eff}$  ( $\varphi \Sigma \mu_{max} \times \tau_{eff}$ ) are also listed.

|                                                                           | SrBi <sub>3</sub> O <sub>4</sub> Cl <sub>3</sub> | BiOCl                 | SrBiO <sub>2</sub> Cl |
|---------------------------------------------------------------------------|--------------------------------------------------|-----------------------|-----------------------|
| $k_1$ (s <sup>-1</sup> )                                                  | $2.3 \times 10^{6}$                              | $1.7 \times 10^{7}$   | 1.9×10 <sup>6</sup>   |
| $k_2 (s^{-1})$                                                            | $4.7 \times 10^{4}$                              | $1.1 \times 10^{5}$   | $4.0 \times 10^{4}$   |
| $	au_{\mathrm{eff}}\left(\mathrm{s} ight)$                                | $1.1 \times 10^{-5}$                             | $6.0 \times 10^{-7}$  | $1.1 \times 10^{-5}$  |
| $\varphi\Sigma\mu_{ m max}~({ m m^2V^{-1}s^{-1}})$                        | 4.1×10 <sup>-7</sup>                             | $2.7 \times 10^{-7}$  | 1.9×10 <sup>-8</sup>  |
| $\varphi \Sigma \mu_{\rm max} 	imes 	au_{ m eff}  ({ m m}^2 { m V}^{-1})$ | $4.5 \times 10^{-12}$                            | $1.6 \times 10^{-13}$ | $2.1 \times 10^{-13}$ |



**Figure S1** XRD patterns of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> samples prepared at 600–800 °C. The SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> sample prepared at 700 °C was used in the present study.



Figure S2 SEM images of the SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> sample prepared at 700 °C.



Figure S3 DOS and PDOS of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> calculated using the Quantum Espresso package.



**Figure S4** (a) Refined crystal structure of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub>, and coordination environments around (b) Bi1 and Bi2, and (c) Sr1 and Sr2 (in Å and degree).



Figure S5 Electron density distribution of  $SrBi_3O_4Cl_3$  obtained by MEM analysis (isosurface: 0.55 Å<sup>-3</sup>).



Figure S6 Determination of bandgaps of (a) SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub>, (b) BiOCl, and (c) SrBiO<sub>2</sub>Cl



Figure S7 Mott-Schottky plots for (a) SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> and (b) SrBiO<sub>2</sub>Cl.



**Figure S8** Structure of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> with  $\sqrt{2} \times \sqrt{2} \times 1$  supercell used for DFT calculation.



Figure S9 PDOS of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> for 6s and 6p orbitals of Bi, along with that of O.



Figure S10 (a) COHP for the interaction of Bi 6pz–Bi 6pz. (b) Schematic image of the interaction.



**Figure S11** Orbital distributions of the CBM (orange) and VBM (blue) of  $SrBiO_2Cl$  estimated by DFT calculations (Isosurface value: 0.02 e/Å<sup>3</sup>), which are viewed from two different directions.



**Figure S12** Band structure of the two models: (a) one with Bi/Sr1 site occupied by  $Bi^{3+}$  and  $Sr^{2+}$  (b) the other with Bi/Sr1 site fully occupied by  $Bi^{3+}$ .



**Figure S13** Orbital distributions of the CBM (orange) and VBM (blue) of BiOCl estimated by DFT calculations (Isosurface value:  $0.06 \text{ e/Å}^3$ ), which are viewed from two different directions.



Figure S14 Valence band structure of SrBiO<sub>2</sub>Cl reproduced from the reference.<sup>S1</sup>



Figure S15 COHP for the interaction of Bi2–O and Bi2–Cl2.



**Figure S16** Fitting of the TRMC kinetics of  $SrBi_3O_4Cl_3$ , BiOCl, and  $SrBiO_2Cl$  using biexponential function  $(A_1\exp(-k_1t) + A_2\exp(-k_2t))$  (the solid green line).



**Figure S17** Time course of photocatalytic H<sub>2</sub> evolution on SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> (100 mg) with in situ photodeposition of a Pt cocatalyst (1 wt%) under UV-vis light ( $300 < \lambda < 500$  nm) from an aqueous methanol solution (10 vol%, 120 mL).



Figure S18 XPS spectrum of  $RuO_2/SrBi_3O_4Cl_3$  in the Ru 3d region.



**Figure S19** (a) Time courses of photocatalytic O<sub>2</sub> evolution on RuO<sub>2</sub>/SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> (100 mg) under visible light (400 <  $\lambda$  < 800 nm) from an aqueous solution of FeCl<sub>3</sub> (5 mM as Fe<sup>3+</sup>, 120 mL, pH 2.4 adjusted by HCl). An excess of O<sub>2</sub> over the stoichiometric amount estimated from the amount of introduced Fe<sup>3+</sup> (150 µmol) was observed in the case of FeCl<sub>3</sub>. The decomposition of SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> and the formation of BiOCl may be related to the excess amount of O<sub>2</sub>. (b) Z-scheme overall water splitting using RuO<sub>2</sub>/SrBi<sub>3</sub>O<sub>4</sub>Cl<sub>3</sub> (50 mg) as O<sub>2</sub>-evolving photocatalyst and Ru/SrTiO<sub>3</sub>:Rh (50 mg) as H<sub>2</sub>-evolving photocatalyst under visible light (400 <  $\lambda$  < 800 nm) in an aqueous FeCl<sub>3</sub> solution (2 mM as Fe<sup>3+</sup>, 120 mL, pH 2.4).

## Reference

S1 H. Suzuki, H. Kunioku, M. Higashi, O. Tomita, D. Kato, H. Kageyama and R. Abe, *Chem. Mater.*, 2018, **30**, 5862-5869.