Harnessing Solar Energy for Electrocatalytic Biorefinery Using Lignin-derived Photothermal Materials

Xinpeng Zhao,a,† Lei Shi,b,† Bing Tian,a Shujun Li,a Shouxin Liu,a Jian Li,a Song Liu,*b Tony D. James *c,d and Zhijun Chen *a

b. College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
c. Department of Chemistry, University of Bath, Bath BA2 7AY, UK.
d. School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
Figure S1. Phenolic hydroxyl content of lignin and D-Lig.

Figure S2. ESR spectra of D-Lig and D-Lig-Fe.
Figure S3. Raman spectra of D-Lig and D-Lig-Fe.

Figure S4. The decay curves of D-Lig-Fe at 520 nm (ESA) after 365 nm excitation.
Figure S5. Efficiency of photothermal conversion of carbon nanotubes upon mimetic solar irradiation.

Figure S6. The photothermal stability measurement of D-lig-Fe powder (8 cycles).
Figure S7. TGA curves of D-Lig-Fe.

Figure S8. Time-dependent temperature change of D-Lig-Fe upon mimetic solar irradiation (100 mW cm\(^{-2}\)) after treating at 80 °C, 100 °C or 150 °C for 1 h.
Figure S9. Six times cycling of voltage output by the on-off simulated solar irradiation.

Figure S10. XRD of NiCoB.
Figure S11. Tafel slope of OER and HMFOR on the NiCoB.

Figure S12. Electrochemical impedance spectroscopy of OER and HMFOR.
Figure S13. HMF conversion and FDCA yield at different potentials.

![Graph showing HMF conversion and FDCA yield at different potentials.](image)

Figure S14. FDCA yield of our research and the previously reported research.\(^1\text{-}^7\)

![Bar chart comparing FDCA yield.](image)
Figure S15. HPLC of the product from our system and standard samples (DFF, HMF HMFCA FFCA FDCA). 2,5-Diformylfuran (DFF), 5-Formylfuran-2-carboxylic acid (FFCA), 5-Hydroxymethyl-2-furancarboxylic acid (HMFCA)
Table S1. The retention time for standard compounds

<table>
<thead>
<tr>
<th>Intermediates</th>
<th>Chemical formula</th>
<th>Molecular weight</th>
<th>HPLC retention time/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>HMF</td>
<td>C₆H₆O₃</td>
<td>126.11</td>
<td>16.7</td>
</tr>
<tr>
<td>DFF</td>
<td>C₆H₄O₃</td>
<td>124.09</td>
<td>20</td>
</tr>
<tr>
<td>HMFCA</td>
<td>C₆H₆O₄</td>
<td>142.11</td>
<td>9.3</td>
</tr>
<tr>
<td>FFCA</td>
<td>C₆H₄O₄</td>
<td>140.09</td>
<td>9.9</td>
</tr>
<tr>
<td>FDCA</td>
<td>C₆H₄O₅</td>
<td>156.09</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Figure S16. Real-time monitoring of the solar power and environmental temperature during the outdoor experiment, the outdoor experiment started at 9:50 on Sep 20, 2022, in Harbin.

Figure S17. Photothermal efficiency of D-Lig-Fe upon irradiation concentrated by Fresnel lens.
Video S1: A motion of engine triggered by generated electricity.

Video S2: A bulb lighted by generated electricity.

References